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Abstract

Digital data is a core driver to improve services on the Internet and, with that, navigate
commercial success. The adoption of new online services and devices led to an increase of
digital data and transformed the potential of the online economy. Until data leaks, unaware
analytics, accurate marketing, and the violation of human rights raised concerns over the
administration of digital data. Today, governments regulate the sovereignty of digital data and
impose new obligations on digital services to empower consumers or end devices. For many
of the new requirements, the question remains if and how new laws can be realized efficiently
at scale. Besides the trend of new legislation, emerging open infrastructures explored and
re-evaluated the autonomy of digital data using modern cryptography. In this context,
Privacy-enhancing Technologies (PETs), which deliver key principles to balance the protection
and transparency of digital data, accelerated a transformation towards a decentralized and
responsible data economy. But, as of today, open infrastructures and consequent innovations
remain isolated and have not been considered for the improvement of existing protocols.

In this thesis, we investigate the potential of PETs in the context of data sovereignty. Based
on our findings, we seek to improve the de facto standard of online protocols towards a
policy-driven and privacy-aware version. Our goal is to provide efficient building blocks for
data sovereignty and provenance which solve upcoming dilemmas of compliance, liability,
and protection. As a result, our contributions improve the status quo as follows. Our first
contribution secures the self-determined protection of digital data and accounts in public
infrastructures. In addition, we present a privacy-preserving authentication scheme and use
it to create accountable online interactions. These solutions explore new approaches of data
compliance where nothing beyond self-determined facts on digital data is disclosed. Our next
contributions target data provenance protocols which return ownership of custodial data back
to end devices. We optimize the efficiency of privacy-preserving protocols for the verification
of data provenance and facilitate client-side deployments in constrained environments. Here,
our first optimization improves bandwidth requirements by reassessing the usage of PETs in
a setting with a weaker network adversary. Additionally, we show that, in an asymmetric
privacy setting, honest-verifier cryptographic proof systems can be secured against malicious
adversaries. As a result, we obtain highly efficient execution times of cryptogprahic proof
computations. Our third contribution automates the compilation of user-driven policies to
PET computation circuits. With that, we mitigate the liability of custodial data controllers to
define, enforce, and maintain data policies on behalf of users. The contributions provided
in this thesis serve as core building blocks to built data sovereign and policy-compliant
applications of the future Internet.
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Kurzfassung

Digitale Daten sind ein zentraler Treiber für die Verbesserung von Internetdiensten und
sorgen damit für kommerzielle und private Erfolge. Die Einführung neuer Online-Dienste
und -Geräte führte zu einer Zunahme digitaler Daten und veränderte das Potenzial der
Online-Wirtschaft. Allerdings ließen die Ereignisse in Form von Datenlecks, unbewusster
Datenanalysen, datenbasiertes Marketing und die Verletzung von Menschenrechten Bedenken
hinsichtlich der Verwaltung digitaler Daten aufkommen. Heutzutage regulieren Regierungen
die Souveränität digitaler Daten und stellen digitale Dienste vor neue Verpflichtungen, wel-
che dem Einfluß von Verbrauchern und Endgeräten auf digitale Daten zugute kommt. Bei
vielen der neuen Anforderungen stellt sich die Frage, ob und wie neue Gesetze effizient und
maßstabsgetreu umgesetzt werden können. Darüber hinaus zeigen offene Infrastrukturen
im Zusammenspiel mithilfe moderner Kryptographie eine neue Autonomie digitaler Daten.
In diesem Zusammenhang beschleunigen datenschutzfördernde Technologien den Wandel
hin zu einer dezentralen und verantwortungsvollen Datenwirtschaft. Bis heute bleiben je-
doch offene Infrastrukturen und die daraus resultierenden Innovationen im Bereich von
datenschutzfördernden Technologien isoliert und weitestgehend ungenutzt.

In dieser Dissertation wird das Potenzial von datenschutzfördernde Technologien im
Kontext der Datensouveränität untersucht. Basierend auf den Erkenntnissen verbessern wir
Online-Protokolle hin zu einer richtliniengesteuerten und datenschutzbewussten Umsetzung.
Unser Ziel ist es, effiziente Bausteine für Datensouveränität und Datenherkunft bereitzu-
stellen, die bevorstehende Dilemmata von Gesetzeseinhaltung, Haftung und Datenschutz
lösen. Die Ergebnisse unserer Forschung verbessern den Stand der Technik wie folgt: Unser
erster Beitrag sichert den selbstbestimmten Schutz digitaler Daten und Konten in öffentlichen
Infrastrukturen. Darüber hinaus stellen wir ein datenschutzschonendes Authentifizierungs-
schema für die Erstellung verantwortungsvoller Online-Interaktionen vor. Diese Lösungen
erforschen neue Ansätze der Datenkonformität, bei denen nichts außer selbstbestimmte
Fakten über digitalen Daten offengelegt werden. Unsere nächsten Beiträge untersuchen und
verbessern Datenherkunftsprotokolle, welche das Eigentum und die Kontrolle von geteilten
Daten an Endgeräte zurückgeben. Wir optimieren die Effizienz von Datenherkunftsprotokol-
len unter Einhaltung datenschutzrechtlicher Gesetze und erleichtern die Bereitstellung von
Datenherkunftsprotokollen in eingeschränkten digitalen Umgebungen. Unser letzter Beitrag
automatisiert die Kompilierung von benutzergesteuerten Richtlinien für den Einsatz von
datenschutzfördernden Technologien. Damit wird die Verantwortung einer gesetzesgetreuen
Datenverarbeitung nach benutzerdefinierten Richtlinien an Technologie gebunden.
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1. Introduction

In this thesis, we investigate new techniques to improve the data consent - protection dilemma
of modern online services and devices. Our main contributions improve the efficiency and
interplay between privacy enhancing technologies and open infrastructures, and provide
operating bodies with transparent, verifiable data protection and compliance techniques.

We argue that consent and protection concerning new safeguarding, liability, and regulatory
requirements of digital data is only possible if online entities can reclaim control and authority
over their digital data. We believe that control and authority over data is tied to empowering
technologies which reside in the hands of the entities that are affected by new regulations.

The following sections motivate the context of this thesis, introduce the research questions,
and present an overview of our main contributions.

1.1. Motivation

The Internet of today is at a turning point, where legislation is likely to shape the future
of the Internet ecosystem as never before. The reason why governments concentrate on
releasing legislative policies depends on growing concerns and past events which impact the
competitiveness of individual economies. At the same time, innovations in the field of public,
decentralized infrastructures yield a plethora of privacy-empowering technologies that could
help established Internet protocols achieving compliance towards new policies.

Digital Legislation: Looking into the past and the early days of the Internet, online data
was collected, managed, and controlled by separate Internet services individually. However,
the increase of services accessible through the Internet introduced usability issues if users
or devices manually handled accounts for an ever growing number of services. The advent
of federated identity mitigated the growing need for a single account with compatibility
across multiple services. Federated identity relies on a trusted third party that delegates
authentication, access, and authority on behalf of users or devices. For example, the Single
Sign-on (SSO) paradigm enables users to select third-party identity providers (e.g. Google,
Meta, etc.) to authenticate towards multiple online services with a single account. Thereby,
identity providers maintain the account of registered users or devices. The concept of
federated identity quickly led to other problems.

Protocols, which delegate the authority of users, empower intermediaries (e.g. identity
providers) to decide which data to track, use, or share towards other online services. Addi-
tionally, based on the account activity, intermediaries may accumulate and analyse account
data for different economic purposes. From an internal perspective, account data is used to
enhance own products and, with that, create better customer experiences. From an external

1



1. Introduction

view, account behavior is of interest for companies that require improved business intelligence
(marketing, planning, advertisement, etc.). Further, the initial lack of transparency in the
intermediary’s terms and conditions caused privacy concerns about how user data was used
and shared. Neither was is possible to determine if and how intermediaries took economic
advantage of the position as the intermediary.

The evolution of the SSO protocol yielded an online economy where few centralized
identity providers succeeded. The situation of centralized providers with accumulated data
attracted attackers and caused data breaches of new scales [1]. The new scales of data
breaches triggered a collective awareness of how valuable data can be and how little influence
users have about circumventing existing arrangements (e.g. opting out of tracking or data
sharing agreements towards a third party). The data leaks confirmed emerging privacy
concerns until noticing that identity providers violated the fundamental human right to be
forgotten [2]. The violation of law provoked legislative engagement of the United States
(US) and European Union (EU) where the California Consumer Privacy Act (CCPA) or the
General Data Protection Regulation (GDPR) handled data privacy and protection regulation
constitutionally [3], [4]. These regulations imposed new ruling on online services as well as
intermediaries. From here on, data controllers and processors had to consider and implement
user-centric authority, accountability, and data sovereignty which includes a user’s rights to
know, delete, opt-out, non-discriminate, limit, and correct data.

As a continuation of data protection regulations, the EU adopted adequacy for the EU-US
Data Policy Framework (DPF) to safeguard national interests during cross-boarder data
transfers [5]. DPFs (e.g. EU-US DPF, Swiss-US DPF, etc.) ensure that national data protection
laws sufficiently apply in partnering economic areas. With that, digital information transfers
and data privacy moves towards cross-border arrangements that we similarly experience
at borders in our physical world. As another legislative policy, the EU Digital Services
Act (DSA) came into force in February 17th, 2024. The DSA is a legal framework with the
purpose to safeguard legal certainty for businesses operating online. As such, the DSA fights
disinformation, illegal content and enforces transparent advertising. The enhanced regulatory
obligations of the DSA affect digital platforms or content disseminating users or devices.
On one hand, the DSA lowers liability concerns of EU-based services which support the
fundamental functioning of the Internet. On the other hand, the DSA categorizes online
services according to their size and purpose and defines new transparency and due diligence
obligations [6]. Thus, at the current state of the Internet, the ever increasing regulatory
complexity will continue to challenge online services and end-devices.

The consequences of non-compliance are penalty fines of up to 4% of worldwide annual
revenue [7]. Thus, online services are faced with increased expenses to investigate and
implement new regulatory obligations. To solve upcoming liability and compliance require-
ments, computer research is challenged to come up with alternative approaches of data
administration. A promising direction is the idea to alleviate data controllers through the
equipment of data sovereign principles at end devices. With that, instead of data controllers,
end devices could be held accountable for digital interactions. Another interesting idea is to
offload data responsibilities towards emerging public digital infrastructures.

2



1. Introduction

Public Digital Infrastructures and Privacy-enhancing Technologies: Besides the increase
of digital laws and policies, another recent Internet evolution took place. With the advent of
decentralized public infrastructures in the form of blockchains, ownership of digital assets
and computation has been put back into the hands of users. Blockchains equip end devices
with wallets that contain cryptographic key pairs. In this context, cryptographic keys are used
to protect data integrity in form of signatures, which are issued by the entity controlling the
wallet. In blockchain ecosystems, it holds that every interaction is authenticated via a wallet
signature. For instance, if a device issues a signature to invoke a blockchain functionality,
then the device remains accountable for the interaction within the blockchain system. Thus,
if the wallet owner maintains cryptographic keys in a non-custodial model, wallets grant
data sovereignty and offer an opposition to current online protocols which takeover the data
administration on behalf of users.

In contrast to the above discussed centralization that exists in the Internet today, blockchains
operate in a decentralized setting. Blockchain operators are decentralized and run a suite
of blockchain-specific protocols and algorithms on proprietary or rented computers. Since
blockchains count as public infrastructures, anyone can join and participate as a node operator.
The core part of blockchains is a consensus protocol which maintains a secure state of data
blocks. The consensus protocol ensures that every operator validates the correctness of new
state updates before locally applying the state update. As such, blockchain operators come
to a network wide agreement of a distributed but equal view of data blocks. Even though
blockchains are decentralized and users can interact with many operators, privacy violations
(e.g. tracking opportunities) must be reassessed. Despite ongoing research challenges, the
decentralized protocol design and shared authority between blockchain operators has the
potential to optimize existing online protocols. Further, public digital infrastructures could be
used to build alternative Internet protocols with user-driven privacy policies.

Due to the fact that cryptography is a fundamentally baked into blockchain protocols (every
state update is cryptographically verified at every operator), blockchain research has yielded
many innovations in the field of applied cryptography. For example, the number of state
updates a blockchain network can take is handled by Privacy Enhancing Technology (PET) in
the form of advanced cryptographic proof systems [8], [9]. Multi-party Computation (MPC) as
another domain of PETs is used to investigate shared custody aspects of wallet management
to enhance reliability of wallet management [10]. A combination of MPC techniques and
cryptographic proofs is used in oracle protocols, which secure blockchain state updates by
attesting to data integrity of secure channels [11], [12]. Using PETs to disguise public parts
of state updates, and the state of blocks in general, has been an early goal of blockchain
research [13]. Hence, blockchain ecosystems will likely continue to accelerate innovations of
applied cryptography, and, with that, serve as an interesting technology pool that empowers
data sovereign protocols and applications.

Summary: In this thesis, we research applied cryptography in the context of building data
sovereign solutions. By advancing PETs, we aim to secure, extend, or optimize protocols
with strong data sovereignty guarantees. The contributions of this thesis help building and
deploying new forms of digital sovereignty and compliance.

3



1. Introduction

1.2. Research Questions

In the following, we derive three core research questions from the situation discussed above.
Before we present a concise representation of our research questions, we narrow down the
context to three core challenges.

Data Consent - Protection Dilemma: Public digital infrastructures and PETs achieve
alternative forms of digital data sovereignty. However, the question remains if and how online
services compensate new liability and compliance obligations. If device data is protected
by service providers, then providers have the responsibilities to define and collect consent
from users. Here, devices hand over trust to providers which are assumed to protect data
according to agreements. With new data protection and privacy obligations, service providers
face new liabilities and costs in managing consent agreements transparently. On the other
hand, alleviating service providers from upcoming challenges by returning responsibilities
of data administration back to devices removes consent agreements and gives devices the
authority to protect data. In this setting, data sovereignty is tied to end devices which can
introduce usability and reliability issues (e.g. lost wallet passphrases) [14].

An interesting direction of research is handing over parts of the consent and protection
challenges to public digital infrastructures. The immutable and accountable management of
consent agreements at public infrastructures removes extra costs and responsibilities from
service providers. At the same time, the satisfaction of agreements and consent is publicly
visible and verifiable if data remains in public infrastructures. Concerning data protection,
privacy-critical data should never be stored immutably "on chain" in public infrastructures.
Otherwise, the policy of the "right to be forgotten" is violated. If data is maintained at end
devices using data sovereign techniques, then PETs can ensure that the data administration
"off chain", away from public infrastructures, respects publicly exposed policies and laws.
As a consequence, we formulate our first research question according to the challenge of
guaranteeing the self-determined data protection and decision-making for consent in public
digital infrastructures. Data protection according to policy-driven agreements must hold for
online accounts at the creation and throughout online interactions with other services. Notice
that our challenge depends on the interplay of PETs and public digital infrastructures, which
is an active research domain on its own. Ideally the new solution mitigates the transparent
exposure of account behavior to the public.

Limits of Privacy Enhancing Technologies: Beyond new solutions for digital accounts,
this work investigates how ownership of custodial data can be brought back to end devices
and locally maintained accounts. We focus on data provenance technologies, which return
data ownership from custodians via data requests through secure communication channels.
The core driver of data provenance protocols are PETs, which give devices the opportunity
to prove the origin and, with that, ownership of data extracted from secure channels. PETs
became prominent in the form of Zero-knowledge Proofs (ZKPs). Initially, ZKPs brought
confidentiality for digital currencies [15] and secured digital credentials with new forms
of privacy [16]. Thereby, researchers invented dedicated ZKP protocols to prove specific
statements. Subsequently, general-purpose proof systems have been able to prove arbitrary
statements expressed via programmable computation circuits [17]. Today, researching zero-
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1. Introduction

knowledge Virtual Machines (zkVMs) and optimizing proving efficiency for any type of
computational arithmetic count to the most researched ZKP topics [18].

The topics researched in this thesis not only rely on efficient ZKP protocols. For example,
data provenance protocols, which empower devices to verify the provenance and ownership
of data from secure channels, rely on ZKP technology and secure MPC techniques. MPC
technology introduces additional overheads and limits an Internet wide deployment of
data provenance protocols [12]. Another challenge is the deployment of privacy-preserving
data provenance protocols. Here, the bottleneck are current ZKP approaches which remain
impractical in constrained environments (e.g. browsers, Internet of Things (IoT) devices,
mobile phones). In order to create practical building blocks for the construction of data
sovereign solutions, the above defined challenges must be solved. Thus, we define our second
research question based on the limits of PETs in data provenance protocols.

Verifiable Data Sovereignty Through User-driven Policies: With access to sovereign
accounts and custodial data, end devices still depend on data sharing and external processing
of data when participating in the digital economy. As a consequence, we investigate how
data sovereignty can be defined over policies such that the device controls data sharing and
external data processing. In the context of this work, consent to data access and processing
should be transparently exposed on public digital infrastructures. Further, if processing
applies "on chain", in public infrastructures, then the public and devices itself are able to track
and comprehend outsourced processing and access. However, if the processing of shared data
happens "off chain", at individual commercial or private services, then devices cannot simply
assess if the processing satisfied previous agreements. Further, devices have to maintain data
sovereignty and remain empowered to determine the policy which guides external processing
and sharing activities of data.

The above depicted problem is an active research area and one potential solution works as
follows. Outsourced data processing in proprietary infrastructures can be made verifiable
through PETs, where data processors attest to a compliant data processing by attaching a
ZKP [19]. Here, punishing mechanisms ensure that processors loose valuable deposits if the
ZKP provision does not happen. The complexity of the solution is difficult to solve in practice
and opens many challenges. To contribute to the research field, our third research question
investigates how PETs function in line with user-driven policies to mitigate unconscious
sharing and processing of data.

In summary, we define the concise research questions of this thesis as follows:

• Research Question 1: How can we ensure self-determined protection and transparency
of digital data during the creation and interaction of online accounts?

• Research Question 2: How can we practically return the sovereignty of custodial data
back to devices and users?

• Research Question 3: How can we mitigate unconscious sharing and processing of
custodial data through user-driven policies?

5



1. Introduction

1.3. Organization

The structure of the thesis is organized as follows: Chapter 2 provides a comprehensive
overview of the fundamental topics which our research is based upon. As a baseline, we
explain main principles of the Internet infrastructure and explain the history of digital account
and data management. Further, we provide fundamentals of computer security. Subsequent
chapters are composed based on a similar structure. Chapter 3 initially systematizes data
sovereignty and presents two main contributions: With Portal, we secure the processing
of ZKPs at public digital infrastructures and propose an SSO alternative with strong data
sovereignty guarantees. With our privacy-preserving authentication protocol, called A-PoA,
we enhance the privacy of services in sovereign, modern certification ecosystems. Chapter 4
initially systematizes data provenance solutions and presents three main contributions: With
Janus, we optimize ZKP computations and facilitate the deployment of data provenance
protocols in constrained environments. With Origo, we optimize the bandwidth requirements
of data provenance approaches and facilitate a deployment at Internet scale. With zkGen,
we automate the generation of PET computation circuits and enable user-driven policies for
applications that rely on PETs. Chapter 5 discusses the contributions of this work with regard
to the research questions and concludes our work. The appendix presents extended details of
ZKP systems and benchmarks, lists the security proofs of our contributions, and states how
our publications apply to this thesis.
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In this work, we propose new approaches to manage digital identifiers and data privacy,
and we optimize protocols that securely verify the provenance of online data. In order to
understand different concepts and building blocks of the constructions, we cover a range of
computer technologies among different domains. At first, we provide the preliminaries to
understand how online services operate in today’s Internet infrastructure and explain the
evolution as well as trends of digital identity management. In addition, we cover emerging
decentralized public infrastructures. Afterwards, we go through provable security, secure
algorithms, and secure protocols to explain the computer security used in this work.

2.1. Internet Infrastructure

The Internet infrastructure is a global body of computers, networks, services, protocols, and
applications. We limit our focus on a core subset of services which establish the functionality
that lets end devices connect to web services. Subsequently, we explain a selection of protocols
that enable the identification and authorization of end devices at web services. Last, we
present new computation and data storage paradigms which are possible in emerging public
digital infrastructures.

2.1.1. Traditional Internet Services

The Internet is an interconnected set of networks that enables the routing of digital messages
between connected computers. To securely communicate with another computer over the
Internet, computers invoke several services for the establishment of a secure communication
channel. In the following, we introduce protocols and services which are necessary for the
communication between end devices and web services.

Internet Protocol

The Internet Protocol (IP) protocol handles the unique identification of devices connected on
the Internet. Every device in a network has a unique IP address and every network manages
a different range of IP addresses. To share a message, the sending device must know the
destination IP address of the other device. If the destination IP address is not part of the local
network that manages the IP of the sending device, then routing services forward the message
until the network controlling the destination IP is reached. Due to the fact that IP addresses
exist in numerical representations that are difficult to remember, computer addresses rely on
easy to remember domain names, which can be translated to IP addresses.
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Domain Name System

The main purpose of the Domain Name System (DNS) is the resolution and lookup of IP
addresses for requested domain names. DNS is a decentralized network of name servers
which provide the DNS directory service. With that, name servers maintain a set of resource
records for every domain name. On the client side, DNS relies on resolver services which
iteratively query name servers with a domain name. Name servers lookup a domain name by
querying local databases and return associated resource records for the queried domain. If a
name service cannot answer a query, then the name server returns a set of other name servers
which are likely to answer the query. The DNS resolver at the client continues to query name
servers until a domain name is resolved and reports an error if no resources can be found.

If users buy a domain name at an domain name registrar (e.g. Godaddy) and become a
domain owner, then users have the ability to manage resource records at self-determined
DNS name servers. A possible configuration of a resource record maps an IP address to the
domain name. If a mapping between a domain name and an IP address exist, then devices can
resolve destination addresses of other computers by querying DNS. For example, an owner
of the domain example.com operates a web service at the IP address 168.119.165.10 and
registers the tuple (domain, IP) at a DNS name server. In order to talk to the web service with
the computer address example.com, the device resolves the IP address for the domain via
DNS and sends a message with the destination IP address 168.119.165.10 to the Internet.
Routing services of the Internet ensure that the message reaches the sub network, which
connects the computer running the web service to the Internet. Due to the fact that online
messages encapsulate destination as well as sender addresses, the web service is able to
respond back to the device by using the sender address. This way, a two-way communication
channel can be established.

Public Key Infrastructure

Reaching another computer over the Internet with a message is a first step. However, to set
up a secure communication channel between a device and a web service, additional steps are
required. In this paragraph, we explain the Public Key Infrastructure (PKI) of the Internet
which authenticates and certifies trustworthy online services. The certification process gives
web services access to a cryptographic key pair which can be used to secure and authenticate
messages (cf. Public Key Cryptography (PKC) in Section 2.2.2). Without the PKI, end devices
cannot reliably check if the communication endpoint is who it claims to be. Neither can end
devices establish secure communication channels using PKC.

To obtain a certificate and, with that, a PKC key pair for a web service, domain owners
are challenged to prove the ownership of the domain to a PKI registration authority. In this
challenge, the registration authority verifies if the operated web service has a valid DNS
entry that points to the IP of the web service. The challenge ensures that the domain owner
successfully registered the DNS entry which connects the IP address of the web service to
the owned domain. If the challenge succeeds, the PKI issues a certificate to the web service
via a certificate authority. The PKI certificate contains a digital signature of the certificate
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authority over the domain and the key pair of the web service. If web services exchange the
PKI certificate, end devices can verify if the communication endpoint has been accepted by
the trusted PKI service. Web services exchange PKI certificates in a standardized protocol for
secure communication (cf. Transport Layer Security (TLS) in Section 2.2.3).

Web Services

Communication parties rely on the TLS protocol to set up a secure communication channel
between two parties: The end device and the web service. TLS enables message confidentiality
and integrity, and throughout the protocol, devices can verify the authenticity of the web
service endpoint. If an external party intercepts the TLS traffic, the external party cannot
tamper with the messages. Neither can the external party access the contents of the exchanged
messages. We provide further details on TLS in Section 2.2.3.

Once the secure communication channel has been established, devices can securely share
or request application-specific data from the web service. If the application at the web service
is stateless, then any device is able to access the application at the web service. But, web
services typically rely on a state of authentication to identify connected devices. Without any
authentication or identifying status, malicious devices would have an easy opportunity to
tamper with the application at the web service. As a result, web services require protocols and
applications that target the secure authentication and management of online identifiers. In the
following, we present a short history of traditional solutions for digital identity management.

2.1.2. Digital Identity Management

In recent years, different forms of Identity Management (IdM) have emerged (cf. Figure 2.1).
We elaborate on the benefits and drawbacks of distinct approaches in the following para-
graphs.

Centralized Identity

Initially, web services on the Internet individually implemented the registration, authenti-
cation, and maintenance of online accounts. However, as the Internet evolved and many
new devices and services connected to the Internet, login management for many different
services became a burden at end devices. The main technique used to identify in the past
and even today remains password and credential-based authentication [20]. Combined with
the amount of digital services, password-based authentication led to an increase of credential
reuse. Account breaches confirmed the vulnerability of reused, weak passwords. At the same
time, the demand grew for a simple custodial solution for identity management.

Federated Identity

Federated identity management solved the usability issue of centralized identity which
required remembering, storing, and maintaining authentication credentials at end devices.
Federated identity introduced a trusted custodial party that takes over the management of
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Figure 2.1.: Overview of digital identity approaches, where digital identifiers and associated
data is managed either (i) at the web service itself, (ii) at dedicated identity
services, or (iii) at public digital infrastructures.

identifiers and data attributes for end devices. Additionally, the trusted custodial party takes
over the authentication and the generation of identifying data on behalf of web services
(cf. graph 2 of Figure 2.1). With that, federated identity brought benefits of exchanging
and linking identifiers, established itself, and, until today, counts as the go to standard to
authenticate online. The most popular protocol that reflects the paradigm of federated identity
is the concept of SSO with Open Authorization 2.0 (OAuth 2.0), where users delegate the
authority of administering identifiers and data access to an external and trusted Identity
Provider (IdP) [21].

The disadvantages of federated identity emerged quickly. With few centralized identity
providers managing millions of online accounts, federated identity generated attractive
data hubs for attackers [22]. The resulting data breaches confirmed emerging data privacy
concerns of end device tracking and profiling for commercial purposes [23], [24]. The
transparency issues caused by federated identity eventually violated fundamental human
rights [2], which accelerated legislative regulations of online privacy through governments.
As a result, computer research investigates novel approaches of identity management to
alleviate custodial data controllers from liability and compliance penalties. One of the most
researched domains of future online identity considers a decentralized setting, where data
sovereignty is brought back to end devices.

Decentralized Identity

Instead of relying on centralized IDPs, the setting of decentralized identity outsources the
administration of identifiers and associated data to decentralized public infrastructures.
The most popular occurrence of decentralized public infrastructures are blockchains (e.g.
Ethereum [25]), where code deployments in form of smart contracts implement the function-
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alities of identity management. As such, smart contracts already implement data resolution
architectures through services such as the Ethereum Name System (ENS) [26]. Thus, when
devices authenticate towards web services with a decentralized sign-on alternative called
Sign-In with Ethereum (SIWE) [27], then web services obtain an identifier that links to ENS
data of devices (cf. graph 3 of Figure 2.1).

The benefit of the decentralized approach is that operators of the blockchain network
cannot easily track or profile device behavior. Because, web services can freely decide which
blockchain operator to contact in order to request smart contract data. Beyond better privacy
opportunities, decentralized sign-on gives devices access to a cryptographic PKC key pair.
The key pair is used to control updates at data administration contracts and gives devices the
sovereignty to determine which data to upload and share. One important drawback of today’s
public digital infrastructures is that access as well as compatibility to privacy-empowering
technologies remains a research area and does not exist in production yet. As a result,
this thesis proposes new approaches to secure data privacy in the context of public digital
infrastructures for identity management. We discuss further details of blockchains in the
upcoming Section 2.1.3.

Credential Management

Digital identifiers allow the discovery, association, and linking of online accounts and data.
But, out of the box, digital identifiers do not provide trust. In order to build up trust, online
identities are required to collect evidence, recommendations, or reputations, which, by the
nature of online interactions, is difficult to establish. Digital interactions mostly rely on
two-party sessions, where witnessing of online behavior is difficult or even impossible to
perform by other parties or services. Most frequently, devices build up reputation-based trust
at individual online services. In this scenario, it remains the choice of the web service to
recommend an account or share evidence towards other online participants or towards the
public. However, if web services are willing to contribute to the establishment of a trusted
identity, then web services issue credentials towards the subject of trust.

Credential management covers (i) the issuance of credentials between the credential issuer
and the credential holder, and (ii) the delegation of credentials between different holders.
Digital credentials are signed data relations between two digital identities which an external
third party can verify. Usually, issuers confirm the information the credential is attesting to
before granting credentials. Depending on the data certification by a credential, the influence
and trust of online identities grows. Due to the fact that credentials require digital signatures,
credential ecosystems depend on key management infrastructures (e.g. the PKI). In the
decentralized identity setting, digital credentials have been reconsidered, where the World
Wide Web Consortium (W3C) standardized the notion of Verifiable Credentials (VCs) [28]
and Decentralized Identifiers (DIDs) [29]. Today, approaches exist that connect VCs to SSO
protocols such as OpenID Connect [30].

The VC ecosystem utilizes DIDs to connect credentials to a holder (cf. Figure 2.2). DIDs
are universally unique identifiers with a mandatory prefix, method, and method specific
identifier, each separated by colons (e.g. did:web:example.com). Each DID resolves to a DID
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Figure 2.2.: Overview of the Verifiable Credentials (VCs) ecosystem. This figure has been
recreated based on the illustration provided by the VC standard [31].

document that specifies security-specific parameters and other mechanics (associated VCs,
claims on the subject, etc.). Issuing parties with the ability to write to a decentralized
public infrastructure must register their DID. VC holders do not register their DID at the
decentralized public infrastructure. However, VC holders disclose their did during credential
presentations towards a third-party verifier. To protect their privacy, credential holders can
switch between different DIDs to obfuscate tracking of their own identity. To issue a VC,
registered authorities (e.g. Root Authority (RA) and Credential Issuing Authority (CIA)) need
to register a Credential Schema (CS) and Credential Definition (CD) at the verifiable registry.
Upon reception of a VC, which links to a CD and CS, a VC holder is able to prove claims
found in the VC in a privacy-preserving manner [32]. VC verifiers leverage the decentralized
public infrastructure to resolve and validate VC entries, signatures, and DID identifiers.

2.1.3. Decentralized Public Infrastructures

Open networks in the form of decentralized public infrastructures emerged with the advent of
blockchain protocols (e.g. Bitcoin went live in 2009 [33] and Ethereum went live in 2012 [25]).
Blockchains are publicly accessible computation networks anyone can join. Further, anyone
can transparently verify the computations happening on blockchains due to the cryptography
that is baked into blockchains. In addition to blockchains, decentralized storage networks
such as the Interplanetary File System (IPFS) [34] brought publicly accessible, and verifiable
storage. In the following, we provide further details on how cryptography influences novel
concepts of decentralized public infrastructures.

Blockchains & Smart Contracts

Public blockchains are open computer networks anyone can join, which run a consensus
protocol to agree upon a common and correct state st at time t. The state maintains two types
of accounts. The Externally Owned Account (EOA) is controlled by a PKC key pair and is
updated if a user owning the key pair sends signed transactions to the blockchain. The second
type of an account is called smart contract, which is an executable program at an unique
address that can be invoked by transactions. Transactions are issued by users and transactions
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are stored in a memory pool, called mempool, until the consensus protocol proposes a new
state update via a new block of transactions. If a new state update is proposed via a new
block of transactions, then blockchain nodes apply transactions, process smart contracts in
virtual machines, and compare the local state updates with the digests provided in the new
block. If the verification succeeds, blockchain nodes locally apply the state update, and, with
that, reach a new global state agreement.

The execution of smart contracts is measured in gas and must be paid by a medium called
cryptocurrency. Cryptocurrencies are collected by operators of the blockchain network and
incentivize the correct maintenance of the state through the consensus construction which
ensures the following principles. State updates and even a new chain of blocks are accepted
if the new block complies with the longest available chain of blocks. Additionally, the
security of the state depends on a cryptographic challenge that operators must solve to earn
cryptocurrencies. The cryptographic challenge prevents an attacker from proposing a forged
chain to the network of operators. Because, blockchains rely on the assumption that the
attacker cannot spend or access more resources for solving the cryptographic challenge than
the network of operators over a longer period of time.

As such, blockchains obtain state integrity and achieve the properties of safety, liveness,
consistency, and, due to the state redundancy at every node, fault-tolerance. Safety provides state
integrity according to past states and prevents adversaries from injecting invalid transactions.
Liveness ensures that every transaction is eventually included in the state. Consistency guaran-
tees that every node eventually has the same view of the state. It holds that every recorded
transaction becomes immutable and persist within the state, and that transactions achieve
non-repudiation, where the signature of every transaction unambiguously identifies a user.

Decentralized Storage

Decentralized storage exists via the prominent example of IPFS as a Peer-to-peer (P2P) network
which handles the distributed storage and sharing of data [34]. Data is made addressable
via cryptography, where hash functions generate hash-based content addressing in a global
name space (cf. Secure Hash Functions in Section 2.2.2). The global name space is hosted
by a group of operators which anyone can join. IPFS provides persistent versioning and
gives devices the ability to track past changes. Due to the properties of content addressable
storage and persistent file versioning, IPFS extends key features of blockchain networks and
integrates itself seamlessly into decentralized public ecosystems.
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2.2. Security Fundamentals

This thesis deals with the advancement of privacy-enhancing technologies (PETs) in the
context of Internet security protocols. We introduce a subset of PETs that are relevant to
understand the contributions of this work. We structure our security fundamentals into
the topics of provable security, security algorithms, and security protocols. The topic of
provable security outlines how computer security can be modelled and defines core principles,
assumptions, and components. With the topic of security algorithms, we show how algorithms
express security properties on parameters. Last, we explain how the security protocols used
in this thesis can be composed based on the previously defined security algorithms.

2.2.1. Provable Security

This work uses the concept of provable security to show the soundness of newly introduced
security contributions for PETs. Provable security can be constructed with different techniques
and in different security models. However, in any case, provable security depends on an
adversarial model with access to a system model. In the adversarial model, the attacker is
given access to computational resources and the system model, which formally defines the
security requirements on a computing task. The security requirements, which the attacker
must break, depend on computational hardness assumptions. A mathematical and formal
proof of security is obtained, if the evaluation of a computation task performed by the
adversary can be reduced to computing the hardness assumptions. In the following, we
define necessary models in order to explain the techniques of provable security.

Security Models

Security models define a setting with different assumptions in which the algorithm can be
proven secure. In the strongest security model, an algorithm is only secure if no additional
assumptions are required. This implies that the adversary has access to as much information
as possible and is computationally unbounded, and algorithms achieve information-theoretic
security (perfect security). The standard security model assumes that adversaries are compu-
tationally bounded, which implies that the algorithm achieve computational security. The
random oracle security model assumes that the adversary has access to a black box. It holds
that a query to the black box with new inputs yields unpredictable outputs. Notice that
output collisions are possible but unpredictability of outputs always holds. Further, security
models such as the common reference string (CRS) model or the PKI model assume that all
parties in the system have access to specific security parameters. In the CRS model, everyone
has access to random string from a pre-determined distribution. In the PKI model, all parties
possess PKI certificates and PKC key pairs such that messages can be authenticated.

System Model

The purpose of the system model is to define security related assumptions that hold when
parties execute a computation task. The description of the task itself is not part of the system
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model. Instead, the security proof technique defines the computation task and functionality
in a specific representation to simplify the understanding. Hence, the system model states
the number and roles of parties in the system. In addition, the system model defines security
properties as system goals.

Concerning the communication model, parties communicate either fully synchronous
with no message delay and with a globally synchronized clock. Or, parties communicate
partially-synchronous, where the message transmission takes a fixed amount of time and
delivery is guaranteed. For asynchronous communication it holds that messages can be
arbitrarily delayed. However, in this case, messages are assumed to be delivered eventually.
The system model further defines if messages are authenticated, keep data confidential, or
preserve integrity during the transmission. For example, if a system model uses mutual TLS
for the communication, then message integrity, confidentiality, and authenticity holds.

Last, the system model selects a security model in which the computation task is proven to
be secure.

Adversarial Model

The adversary model defines multiple capabilities of the adversary. Concerning the compu-
tational power, an adversary is either computationally bounded and capable to compute in
polynomial time, or an adversary can compute with unbounded computational resources.
The capability to compute must match the security model used by the system. For example,
in the strongest security model, an adversary has unbounded compute resources and in the
standard model, the adversary has computationally bounded resources.

Concerning the corruption of parties in the system, an attacker can be categorized as
fail-stop, passive, active, or semi-malicious. If the adversary corrupts a party of the system
to fail-stop, then the adversary is causing a random crash. A passive adversary is an
eavesdropper, who is able to observe parties and intercept the communication transcript
in order to learn some secret information. Active adversaries corrupt parties such that the
parties arbitrarily deviate from the protocol specification. Semi-malicious adversaries honestly
follow the protocol specification but select inputs or make decisions arbitrarily. We do not
cover additional corruption models such as covert or rushing adversaries but mention them
here for completeness.

The adversary access to the system model is either static, where the number of corrupted
parties is determined initially, and never changed thereafter. If the attacker has adaptive
access to the system, then the adversary can choose the amount of compromised parties at
any time during the protocol execution.

Algorithm Security

We cover multiple aspects of secure algorithms in the following paragraphs.
Notions of Security With regard to the computational power of the adversary, a secure

algorithm can be classified with respect to providing information-theoretic security, statistical
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security, and computational security. The information-theoretic model assumes computation-
ally unbounded adversaries whereas computational security polynomial time adversaries
assumes. For statistical security, the adversary has an advantage of less or equal to 1

2 + ϵ

probability in correctly solving the computation task. For computational security, the al-
gorithm must be resistant against computationally bounded adversaries (e.g. polynomial
time adversaries). In other words, computational security is resistant against brute-force
attacks. Further, semantic security (computational or statistical indistinguishability) prevents
an adversary from approximately differentiating a message distribution with a probabilistic
guess. Again, the selection of the security model determines the type of security an algorithm
must achieve.

Hardness Assumptions: Security algorithms depend on mathematical problems (hardness
assumptions), which are difficult to compute. For example, computing the factorization of
integers or the discrete log on specific mathematical parameters is assumed to be infeasible if
the adversary has bounded computation resources. With access to quantum computing, the
adversary can break the factorization of integers but cannot break the hardness of lattice-based
compute tasks. Hardness assumptions can be defined in different mathematical domains.
For example, group theory is used to express the discrete log problem and number theory
expresses the Rivest–Shamir–Adleman (RSA) hardness assumptions. Linear algebra is used
to define lattice-based problems. Algebraic geometry and group theory are used to define the
underlying hardness assumptions of Clliptic Curve (EC) security. To clarify, we list different
hardness assumptions next which are assumed to be infeasible to break. Further assumptions
and details can be found in the work [35].

• (Discrete Log) Discrete Logarithm Problem (DLP): Given the group elements g, h ∈ G

with h = gx mod N, is is difficult to find x = loggh. G is a finite cyclic group.

• (Discrete Log) Elliptic Curve Discrete Log Problem (ECDLP): Given the points of an
elliptic curve E over a finite field Fq with q = pn and prime p as P, Q ∈ E(Fq), it is
infeasible to find an integer a that determines Q = aP.

• (Discrete Log) Computational Diffie-Hellman (CDH): Given the group elements
g, ga, gb ∈ G, no polynomial time adversary can compute gab.

• (Discrete Log) Decision Diffie-Hellman (DDH): Given h, ga, gb ∈ G, it is computational

infeasible (polynomial time adversary) to determine if h ?
= gab.

• (Factoring) RSA Problem (RSAP): Given two large primes p, q (with bits >= 200) and
n = pq, it is infeasible to factorize n for p, q. Finding p, q is possible with primality
testing algorithms.

Cryptosystems: Based on the type of the hardness assumption, different cryptosystems are
available today. Even though cryptosystems do not necessarily rely on the same hardness
problem, cryptosystems can define equal security functionalities through security algorithms
(cf. Section 2.2.2). For example, a digital signature scheme can be instantiated using an
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ElGamal or EC (discrete log), a RSA (factoring), or an Learning with Errors (LWE) (lattice)
based cryptosystem.

Cryptographic Primitives: Secure algorithms are classified based on the function design
or primitive, which decides when and how a hardness assumption is used to protect vari-
ables. For example, one-way functions f are designed to protect inputs during the function
evaluation. It holds that the evaluation of f is easy to compute on the inputs x. However,
with access to the output f (x), one cannot compute the inverse of f to determine the input x.
Trapdoor functions are one-way functions with a special secret that allows the computation of
the inverse. It holds that every trapdoor function is a one-way function but not every one-way
function is a trapdoor function. For example, trapdoor functions exist in asymmetric cryp-
tography (cf. PKC in Section 2.2.2), where, by knowing a public key, computing a ciphertext
is easy. But to decrypt a ciphertext, a party must have access to the corresponding private
key. Equal to hash functions, symmetric cryptography uses one-way functions which do not
count as trapdoor functions. Typical hash functions are one-way without a trapdoor because
hash functions cannot be reverted at all. Concerning symmetric cryptography, computing a
ciphertext using Advanced Encryption Standard (AES) requires knowledge of a secret key
but, with the key, it is equally easy to compute the inverse of AES. Hence, AES is a one-way
function but does not count as a trapdoor function.

Pseudo-random Functions (PRFs) are keyed or seeded functions Fk: k× {0, 1}∗ → {0, 1}∗,
where the key k = {0, 1}∗ is uniform and Fk is indistinguishable from a function chosen
uniformly at random from a set of functions with equal distributions (same input-output
domains). Pseudo-random Generators (PRGs) are PRFs but expect a shorter uniform seed
or key, which is then turned into a longer pseudo-random output. PRGs continuously add
entropy to an internal pseudo-random state, where entropy is typically captured from physical
hardware states. PRGs are used in key derivation functions for encryption algorithms.

Last, we introduce the principle of permutation functions. A permutation p on a set X is a
bijective function from X to p. A trapdoor one-way permutation additionally implements
the model of a trapdoor one-way function and can be used to model asymmetric encryption
schemes. Pseudo-random Permutations (PRPs) can be used to model symmetric encryption
algorithms such as AES. We introduce additional cryptographic principles throughout the
Section 2.2.2, where we cover the techniques of MPC, ZKP, hash functions, commitments,
oblivious transfer, etc.

Security Proof Techniques

All security proof techniques rely on an adversary model with access to a system model.
Based on the defined capabilities, the adversary obtains a set of parameters through the
interaction with the system model, which executes a computation challenge in the context of
a security model. Next, the security proof technique evaluates if the computation challenge
at the adversary can be reduced to computing hardness assumptions. In the following, we
introduce different techniques to formally evaluate the security of algorithms or protocols.

• Game-based Security Proof: This type of security proof considers a game between
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the adversary and a made up challenger. Both parties are assumed to be probabilistic
processes that can communicate. The game is modelled as a probability space which
defines an advantage scenario for the adversary. The advantage is expressed via a
comparison of two probabilities: a target probability and a probability that an event
occurs. The security is proven if the probability of the event is negligibly close to the
target probability.

The event is caused by a polynomial-time adversary Aa who solves the challenge of
breaking the security of an algorithm a with non-negligible probability. Next, as a target
probability, game-based security proofs rely on the challenger Ch who is capable of
breaking a hardness assumption h with non-negligible probability. This is possible if the
challenger can run the security algorithm with the secret inputs that define the hardness
assumption. Now, if both Aa and Ch are used in the security game, then the probability
space consists of (i) the event that Aa succeeds (security property is broken) and (ii)
the event that Ch succeeds (hardness assumption is broken). The subtraction of both
probabilities defines the advantage of the adversary. A negligible advantage means that
breaking the security property in the game is as likely as solving a hardness assumption
with non-negligible probability. Since breaking a hardness assumption is assumed to be
infeasible, it holds that the security algorithm is secure. A popular model to construct
game-based security proofs is the game-playing framework [36], [37].

• Simulation-based Security Proof: In the simulation-based paradigm, the adversary
is given access to a (i) real protocol execution Treal and a (ii) ideal protocol execution
Tideal. In the real world, the adversary captures a protocol execution Treal with the
capabilities defined in the adversarial model. Here, no additional assumptions are
required. The ideal world relies on an incorruptible trusted party which executes the
ideal functionality of the protocol. To run the ideal protocol execution, an adversary
called simulator generates and collects all inputs of honest and dishonest parties and
runs the protocol over all collected inputs. Then the simulator adds all messages of
the protocol to Tideal. The purpose of running the protocol at the simulator serves
the collection of intermediate messages. Afterwards, the simulator invokes the ideal
functionality with all required inputs and, subsequently, receives and adds the outputs
to Tideal. If the adversary cannot distinguish the protocol transcript of the real world
Treal from the protocol transcript that is generated in the ideal world Tideal, then the
adversary learns nothing new (semantic security) and security holds.

• Universal Composability Security Proof: The above mentioned security proof tech-
niques cover stand-alone executions of security protocols or algorithms. However, if an
algorithm is composed of multiple secure algorithms (which might run concurrently),
then a stand-alone security proof is not enough. The Universal Composability (UC)
model can be used to show the security of protocols that rely on a composition of secure
algorithms. The UC model adds another adversarial entity, called the environment, to
the simulation-based model. The environment captures inputs and outputs of all parties
and interacts with the adversary. The security in the UC model holds if no environment
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can distinguish a real protocol execution with the adversary from an ideal protocol
execution with a simulator.

2.2.2. Secure Algorithms

In this section, we describe security algorithms and functionalities at the abstraction level of
algorithmic building blocks. Notice that the building blocks can be instantiated with different
cryptosystems (cf. Section 2.2). Depending on the used cryptosystem, the parameterization
of security algorithm can deviate. For each security algorithm and principle, we present the
security properties and guarantees.

Secure Hash Functions

A secure hash function implements an algorithm, where

• h.Hash(m) −→ (h) takes as input a message string and outputs a constant size string h.

Hash functions guarantee three properties: Preimage-resistance ensures that given h, and
attacker cannot find m if h = h.Hash(m). Second preimage-resistance ensures that given m1 an
attacker cannot find m2 such that h.Hash(m1)=h.Hash(m2) holds, with m1 ̸= m2. Collision-
resistance ensures that finding m1 ̸= m2 with h.Hash(m1)=h.Hash(m2) is infeasible.

Keyed-hash or Hash-based Key Derivation Function

A HMAC-based Key Derivation Function (HKDF) function converts parameters with insuffi-
cient randomness into suitable keying material for encryption or authentication algorithms.
The HKDF scheme is defined by a tuple of algorithms, where

• hkdf.ext(ssalt, kikm) −→ (kpr) takes in a string ssalt, input key material kikm, and returns a
pseudorandom key kpr.

• hkdf.exp(kpr, sinfo, l) −→ (kokm) takes in a pseudorandom key kpr, a string sinfo and a
length parameter l and returns output key material kokm of length l.

Both functions hkdf.ext and hkdf.exp internally use the hmac algorithm (cf. Formula 2.1),
which takes in a key k, a bit string m, and generates a string which is indistinguishable from
uniform random strings. The hmac algorithm requires a hash function H with input size b
(e.g. b=64 if H=SHA256).

hmac(k, m) =H((k′ ⊕ opad)||H((k′ ⊕ ipad)||m))

with k′ = H(k), if len(k) > b

and k′ = k, else

(2.1)
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Figure 2.3.: AEAD stream cipher configured with AES in the Galois/Counter mode (Galois
Counter Mode (GCM)). The algorithm encrypts a plaintext pt = [pt1, . . . , ptl ]

to a ciphertext ct = [ct1, . . . , ctl ] under key k and authenticates the ciphertext
ct and associated data AD with the tag t. The symbol MH is a Galois field
multiplication which translates bit strings into GF(2128) polynomials, multiplies
the polynomials modulo the field size, and translates the polynomial back to the
bit string representation.

Authenticated Encryption

Authenticated Encryption with Associated Data (AEAD) provides communication channels
with confidentiality and integrity. This means, exchanged communication records can only be
read by parties with the encryption key and modifications of encrypted data can be detected.
An AEAD encryption scheme is defined by the following tuple of algorithms, where

• aead.Setup(1λ) −→ (ppaead) takes in the security parameter λ and outputs public param-
eters ppaead of a stream cipher scheme E and authentication scheme A.

• aead.Seal(ppaead, pt, k, aD) −→ (ct, t) takes in ppaead, a plaintext pt, a key k, and
additional data aD. The output is a ciphertext-tag pair (ct, t), where ct = E(pt) and
t = A(pt, k, aD, ct) authenticates ct.

• aead.Open(ppaead, ct, t, k, aD) −→ {pt, ∅} takes in ppaead, a ciphertext ct, a tag t, a
key k, and additional data aD. The algorithm returns the plaintext pt upon successful
decryption and validation of the ciphertext-tag pair, otherwise it returns an empty set
∅.

Stream ciphers are characterized by pseudorandom generators (AES in the GCM mode),
which incrementally output key streams or Counter Blocks (CBs) (cf. Figure 2.3). CBs are
combined with plaintext data chunks to compute ciphertext data chunks. Subsequently,
AEAD ciphers compute an authenticated tag t on all ciphertext chunks and associated data.
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Cryptographic Accumulator

One-way cryptographic accumulators, as initially introduced in [38], provide the ability to
verify the set membership of an element xi ∈ X, with i = {1, 2, . . . , N}, where N is the number
of elements within a set X, without revealing individual elements of the set. Throughout this
work, we require the accumulator to be dynamic and positive. Dynamic accumulators support
additive and subtractive operations which increase and decrease the number of elements of
the accumulator respectively [39]. Positive accumulators support proofs of membership.

Among multiple options of accumulator types, this work relies on the RSA-accumulator of
the work in [40] due to the following reasons:

• An accumulator based on modular exponentiation has minimal storage requirements
and O(1) verification complexity compared to Merkle-tree accumulators [41], [42].

• The RSA-accumulator can be used in combination with the group Z∗n/{±1}, with the
RSA modulus n. More specifically, it relies on the strong RSA assumption [43], and the
hardness of the discrete log problem [44] which makes it applicable to succinct Proof of
Knowledge (PoK) of a discrete-log schemes, as introduced in the work [45].

The work in [40] defines the accumulator value as a quadratic residue at modulo n at
time t, with n = p ∗ q as the RSA modulus. The value a is initialized through the generator
gacc ∈ QRn, where QRn is the subgroup of quadratic residues of the generic group of
unknown order G?. The security of the RSA-accumulator follows the strong RSA assumption
with primes p, q, p′, and q′, with p = 2p′ + 1 and q = 2q′ + 1. Accumulator elements
are odd positive prime integers because otherwise, an element could be proven a member
of the set of elements even though it is not (exclusion requirement of element divisors).
Adding an element xi ∈ Xt, with Xt = {x1, x2, ..., xi}, to the accumulator works by calculating
at+1 = axi

t mod n. The extraction of the respective witness wt for xi calculates as wt = aXt\{xi}
t

mod n. A successful verification of the element xi with its witness wt as a = wxi
t mod n

equals the latest accumulator value at+1. Deleting an element xi from the set of elements
in the accumulator requires the knowledge of the factorization of n. The deletion works

by calculating at+1 = ax−1
i mod ϕ(n)

t mod n and updating another witness wt paired with
x calculates as wt+1 = wc

t ab
t+1 mod n and relies on the Bezout coefficients b and c, with

bx + cxi = 1.

Multiplicative to Additive (MtA) Conversion based on Homomorphic Encryption

The secure 2PC MtA algorithms convert multiplicative shares x, y into additive shares α, β

such that α + β = x · y = r yield the same result r. The MtA algorithms exist in a vector
form, which maps two vectors x, y, with a product r = x · y, to two scalar values α, β, where
the sum r = α + β is equal to the product r. The functionality of the vector MtA scheme
can be instantiated based on Paillier additive Homomorphic Encryption (HE) [46]. Additive
HE allows parties to locally compute additions and scalar multiplications on encrypted
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values. With the functionality provided by the Paillier cryptosystem, we define the vector
MtA scheme, as specified in the work [47], with the following tuple of algorithms, where

• mta.Setup(1λ) −→ (skP,pkP) takes in the security parameter λ and outputs a Paillier key
pair (skP,pkP).

• mta.Enc(x,skP) −→ (c1) takes in a vector of field elements x=[x1, . . . , xl ] and a private key
skP and outputs a vector of ciphertexts c1=[EskP(x1), . . . , EskP(xl)].

• mta.Eval(c1,y,pkP) −→ (c2,β) takes in the vector of ciphertexts c1=[c11, . . . , c1l ], a vector of
field elements y=[y1, . . . , yl ], and a public key pkP. The output is a tuple of a ciphertext

c2 = c1y1
1 · . . . · c1yl

l · EpkP(β′) and the share β = −β′, where β′ $← Zp.

• mta.Dec(c2,skP) −→ (α) takes as input a ciphertext c2 and a private key skP and outputs
the share α=DskP(c2).

The tuple of algorithms is supposed to be executed in the order where party p1 first calls
mta.Setup and mta.Enc. The function Ek(z) is a Paillier encryption of message z under key k.
After p1 shares the public key pkP and the vector of ciphertexts c1 with party p2, then p2 calls
mta.Eval and shares the ciphertext c2 with p1. Last, p1 calls mta.Dec, where Dk(z) is a Paillier
decryption of message z under key k. If the algorithms are executed in the described order,
then party p1 inputs private multiplicative shares in the vector x and obtains the additive
share α. Party p2 inputs the private vector of multiplicative shares y and obtains the additive
share β. In the end, the relation x · y = α + β holds, and neither the party p1 nor the party p2

learn anything about the private inputs of the counterparty.

Oblivious Transfer (OT)

The 1-out-of-2 OT1
2 protocol involves two parties where party p1 sends two messages m1, m2

to party p2 and p1 does not learn which of the two messages mb is revealed to party p2. Party
p2 inputs a secret bit b which decides the selection of the message mb. An Oblivious Transfer
(OT) scheme is defined by a tuple of algorithms, where

• ot.Setup(1λ) −→ (ppOT) takes as input a security parameter λ and outputs public parame-
ters ppOT of a hash function H and encryption schemes, where E1/D1 encrypts/decrypts
based on modular exponentiation and E2/D2 encrypts/decrypts with a block cipher.

• ot.TransferX(ppOT) −→ (X) takes in ppOT, samples x $← Zp, and outputs an encrypted
secret X = E1(x).

• ot.TransferY(ppOT, X, b) −→ (Y, kD) takes in ppOT, a cipher X, a bit b, and samples

y $← Zp. The output is a decryption key kD = Xy and a cipher Y encrypting as

Y = E1(y) if b ?
= 0, or as Y = X · E1(y) if b ?

= 1.

• ot.Encrypt(ppOT, X, Y, m1, m2, x) −→ (Z) takes in ppOT, Y, and derives k1 = H(Yx),
k2 = H(( Y

X )
x). The output is a vector of ciphers Z = [E2(m1, k1), E2(m2, k2)].
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• ot.Decrypt(ppOT, Z, kD, b) −→ (mb) takes in ppOT, key kD, the bit b, and a vector of
ciphers Z = [Z1, Z2]. The output is the message mb = D2(Zb, kD).

In the OT1
2 protocol, party p1 calls ot.Setup and ot.TransferX, and sends the public parameters

and cipher X to p2. Party p2 calls ot.TransferY, locally keeps the decryption key and shares
the cipher Y with p1. Now, p1 shares the output of ot.Encrypt with p2, who obtains mb by
calling ot.Decrypt.

Secure 2PC with Garbled Circuits

Secure 2PC based on boolean Garbled Circuits (GCs) depends on the 1-out-of-2 OT1
2 sub

protocol to secretly exchange input parameters of the circuit [48]. We define secure 2PC
based on boolean garbled circuits by extending our OT definition with the following tuple of
algorithms, where

• gc.Setup(1λ) −→ (ppGC) takes in the security parameter λ and outputs public parameters
ppGC.

• gc.Garble(ppGC, CG, din) −→ (kg
in, e, G(C), Tk-d, Td-k) takes as input ppGC, a boolean

circuit CG, the input bit string din, and randomly samples signal bits and wire keys

σ,k $← Zn. Every wire receives two wire keys where the internal labels map wire keys
to the numbers 0 and 1. Based on the signal bits and internal labels, every wire receives
two external labels. The output consists of input wire keys kin, the garbled tables G(C),
input and output decoding tables Td-k, Tk-d, and external labels e.

• gc.Evaluate(ppGC, kg
in, ke

in, e, G(C)) −→ (kout) takes in public parameters, input wire
keys, external labels, and the garbled circuit tables and outputs output wire keys.

On a high-level, a 2PC system based on boolean garbled circuits involve a party p1 as the
garbler and party p2 as the evaluator. Party p1 calls gc.Setup and gc.Garble. Subsequently,
p1 sends e, kg

in, G(C), and Tk-d to p2. If the semi-honest 2PC system is used in the context
of an Honest Verifier Zero-knowledge (HVZK) proof system, then p1 does not share Tk-d.
Next, to obtain the remaining input labels ke

in of the evaluator p2, p1 and p2 interact with the
OT1

2 scheme. Initially both parties call the transfer functions. Next, p1 sends input wire keys
encrypted by ot.Encrypt as messages (m1=k̂e

in, m2=k̂¬e
in ) to p2. Party p2 obtains labels ke

in by
calling ot.Decrypt. Then, p2 calls gc.Evaluate and if Tk-d has been shared, decodes output
wire keys to obtain the output data bit string dout.

Commitment Schemes

We formally define cryptographic commitments with the following tuple of algorithms, where

• c.Commit(m, rc) −→ (c) takes in a string m and commit randomness rc
$← R and yields

a commitment string c.
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Merkle Tree commitment structure

Data commitments

Figure 2.4.: Binary Merkle Tree commitment structure on a set of data items xi, with i ∈
{0, . . . , N}. The depicted Merkle Tree has a depth D=2, leafs l1, . . . , l2D , parents
p1, p2∗2D−1−2, a root croot, and depends on the hash function H. The root croot

represents the commitment string and the witness w consists of the internal
witnesses wi, with i ∈ {0, . . . , N} and a Merkle path fpath(xi) that depends on
the committed data items. In this figure, the witness comprises the set of tuples
w=[(w1, [l2

2 , p2
2] = fpath(x1))], where l2

2 indicates that l2 is the second concatenation
when computing p1.

• c.Open(m, rc, c) −→ ({0, 1}) takes in a message string, a commit randomness, and a
commitment string and outputs 1 only if c is a valid commitment string of the tuple (m,
rc).

The algorithms c.Commit, c.Open satisfy the properties of a secure commitment scheme,
where computational binding ensures that after committing to m1, a Probabilistic Polynomial
Time (PPT) adversary cannot find c.Commit(m2, r2)==c.Commit(m1, r1), with (m1, m2) ∈ M,
(r1, r2) ∈ R, and m2 ̸= m1. Further, anyone seeing c learns nothing on m due to the
property of statistical hiding, where c.Commit(m1, rc) is statistically indistinguishable from
c.Commit(m2, rc) with (m1, m2) ∈ M and rc ∈ R.

We use commitment schemes in combination with ZKP systems to construct enhanced
privacy levels of user data. To do so, we leverage the fact that a commitment string can be
opened privately if the ZKP circuit computes the cs.Open logic while taking the witness w
as a private input. We rely on different algorithms to construct commitments (e.g. via hash
functions or a Merkle Tree (MT) [49], [50]). For example, computing an MT inclusion proof
against a commitment croot requires the ZKP circuit to derive croot’ based on the secrets x1 and
w, and check if croot’=croot (cf. Figure 2.4).

Public Key Cryptography & Digital Signatures

PKC systems provide users with complementing key pairs to enable applications such as
digital signatures or asymmetric encryption. The key property of PKC is that the keying
material at users consists of a public (public key) and private (private key) part, where the
private part is never disclosed. Using PKC, we define a digital signature scheme on a message
string m with the algorithms, where

• pk.Setup(1λ) −→ (sk, pk) uses a security parameter to output a PKC private key sk and
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public key pk.

• pk.Sign(sk, m) −→ (σ) takes as input the secret key and a message string m, and outputs
the signature σ.

• pk.Verify(pk, m, σ) −→ {0, 1} takes as input the public key, the message message string,
and a signature, and outputs either a 1 if the signature verification succeeds. Otherwise,
the output is a 0.

A user calling pk.Setup and controlling the private key sk is able to sign a message m with
pk.Sign, such that any user with the corresponding public key pk can verify the authenticity of
m by calling pk.Verify. The PKC of the digital signature scheme guarantees that only the user
with the private key can generate valid signatures according to the key pair.

Zero-knowledge Proof System

Proof systems allow a prover p to convince a verifier v of whether or not a statement is true.
In theory, proof systems rely on a NP language L and the existence of an algorithm RL,
which decides in polynomial time if w is a valid proof for the statement x ∈ L by evaluating

RL(x, w)
?
= 1. The assumption is that for any statement x ∈ L, there exist a valid witness w

and no witness exists for statements x /∈ L [51], [52]. Proof systems provide the properties:

Completeness which ensures that an honest prover convinces an honest verifier by presenting
a valid witness for a statement.

Soundness which guarantees that a cheating prover cannot convince a honest verifier by
presenting an invalid witness for a statement.

Zero-knowledge which guarantees that a malicious verifier does not learn anything except
the validity of the statement.

HVZK which holds if the zero-knowledge property can be shown for a semi-honest verifier,
who honestly follows the protocol definition.

ZKPs became prominent by securing cryptocurrencies to remain private but publicly ver-
ifiable [53]. Further, the field of verifiable credentials uses ZKPs to prove knowledge of
signatures on data which is further asserted against public statements (e.g. age verifica-
tion) [31], [54], [55]. Network policies rely on ZKPs to validate traffic compliance against
block or allow lists [56], [57]. Data provenance protocols use ZKPs to validate integrity and
non-ambiguity of TLS data [12], [58].

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge: A zkSNARK proof
system is a zero-knowledge proof system, where the four properties of succinctness, non-
interactivity, computational sound arguments, and witness knowledge hold [59]. Succinctness
guarantees that the proof system provides short proof sizes and fast verification times even
for lengthy computations. If non-interactivity holds (cf. the Fiat-Shamir [60] heuristic in
Appendix C), then the prover is able to convince the verifier by sending a single message.
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Computational sound arguments guarantee soundness in the zkSNARK system if provers are
computationally bounded. Last, the knowledge property ensures that provers must know a
witness in order to construct a proof.

We formally define a zkSNARK system with the following tuple of algorithms, where

• zk.Setup(1λ, ccsC) −→ (pk, vk) takes as input a security parameter and a compiled
constraint system expressing a circuit C, and outputs the prover and verifier keys pk, vk.

• zk.Prove(ccsC , w, pk) −→ π takes as input the compiled constraint system, a private
witness, and the prover key pk and outputs a proof π.

• zk.Verify(wpub, vk, π) −→ {0, 1} takes as input a public witness wpub, the verifier key vk,
and the proof π and outputs a 1 if π combined with vk successfully verify against wpub.
Otherwise a 0 is returned.

After running the zk.Setup algorithm, a user as the prover is able to compute a proof π by
calling zk.Prove and share π with another user as a verifier. The proof π convinces the verifier
of a statement expressed by a circuit C if the verifier successfully evaluates π using zk.Verify.

ZK Circuit Representation: ZKP systems rely on separate data representations to achieve
the desired functionality. For instance, ZKP systems translate a constraint-based description
of a computation into a provable arithmetic encoding via a frontend stack [61]. The arithmetic
representation can be evaluated by the respective backend stack of the ZKP system. As of
today, different domain-specific languages (DSLs) exist to describe the frontend, backend,
or intermediate encodings of a computation circuit. Additional tooling exists to compile
regular programs into ZKP circuits [62] or to provide interoperability between different ZKP
encodings [63]. However, no tooling generates ZKP circuits at the abstraction level of policy
compliance, which this thesis addresses.

Scope: In this thesis, we consider the PlonK Polynomial Interactive Oracle Proof (PIOP)
system [52], [64], [65] to generate ZKPs in form of zkSNARKs, which have the characteristics
of succinct proof sizes and non-interactivity to convince a verifier. Similar to the work [66],
we notice that identity systems introduce a setting where provers are exposed to limited
computational resources (e.g. mobile phones) and verifiers have access to more powerful
servers. Thus, we employ a proof system that uses a transparent Polynomial Commitment
Scheme (PCS) (e.g. FRI [67], [68]), with quasilinear prover and polylogarithmic verifier
complexities, for the off-chain computation and validation of ZKPs. To verify zkSNARKs
on-chain, we rely on proof systems with a with a universal setup PCS (e.g. KZG [69]). The
constant verification complexity of the universal setup PCS provides efficient verification of
zkSNARKs at smart contracts [54].

ZKPs based on Garbled Circuits (GCs): Interestingly, zero-knowledge is a subset of
secure 2PC and a ZKP can be computed using GC-based 2PC if only one party inputs private
data. In this work, we make use of the HVZK notion based on boolean GCs [70]. In this
setting, the garbler and constructor of the GC acts as the verifier and is assumed to behave
semi-honest. The GC evaluates a public function f , which yields {0, 1}. The evaluator, as
the prover, obtains the GC, input wire keys and corresponding external labels but does
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Table 2.1.: Notations and formulas of TLS variables.
Variable Formula

H2 H(ClientHello||ServerHello)
H3 H(ClientHello||. . . ||ServerFinished)
H6 H(ClientHello||. . . ||ServerCert)
H7 H(ClientHello||. . . ||ServerCertVfy)
H9 H(ClientHello||. . . ||ClientCertVfy)

label11 “TLS 1.3, server CertificateVerify”
(kSATS, ivSATS) | DeriveTK(s=SATS|CATS) =
(kCATS, ivCATS) ( hkdf.exp(s,“key”,H(“ ”),len(k)),

hkdf.exp(s,“iv”,H(“ ”),len(iv)) )

not obtain the decoding table. After the prover evaluates the GC and returns the wire key
which corresponds to a 1, the verifier is convinced of the proof. Formal security proofs for
completeness, soundness, and HVZK of the garbled circuits proof system are provided in the
work [70].

Secret Sharing

Secret sharing involves a trusted dealer to break a secret into shares with a ss.Share algorithm.
Shares are distributed to qualified recipients which can reconstruct the secret by computing
individual shares back together with a ss.Reconstruct algorithm [71]. In this work, we
consider secret sharing with an access structure of t=n=2, where t out of n parties must add
together secret shares to reconstruct the secret [72].

We formally define a secret sharing scheme with the following tuple of algorithms, where

• ss.Setup(λ) −→ (pp) takes in a security parameter and returns public parameters and

randomness r $← R(λ).

• ss.Share(pp, r) −→ (r) takes in public parameters and randomness and returns additive
secret shares r=[r1,. . ., rn], where ∑n

x=1 rx = r holds.

• ss.Reconstruct(r) −→ (r) takes in additive secret shares and returns their sum.

2.2.3. Secure Protocols

For cryptographic protocols, we describe the inputs and outputs which are provided and
obtained by involved parties. Additionally, we mention the security properties of exchanged
parameters.
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TLS Handshake between the client c and server s:

inputs: x $← Fp by c. (y $← Fp, skS, pkS) by s.
outputs: (tkCATS, ivCATS, tkSATS, ivSATS) to c and s.

1. c: X = x · G; send X in mCH

2. s: Y = y · G; send Y in mSH

3. b: dES = hkdf.exp(hkdf.ext(0,0),“derived” || H(“ ”))
4. b: DHE = x · y · G; HS = hkdf.ext(dES, DHE)
5. b: SHTS = hkdf.exp(HS,“s hs traffic” || H2)
6. b: CHTS = hkdf.exp(HS,“c hs traffic” || H2)
7. b: (kCHTS, ivCHTS) = DeriveTK(CHTS)
8. b: (kSHTS, ivSHTS) = DeriveTK(SHTS)

9. b: fkS = hkdf.exp(SHTS, “finished” || “ ”)
10. s: SCV=ds.Sign(skS,label11||H6); send SCV in mSCV

11. s: SF = hmac(fkS, H7); send SF in mSF

12. c: SF’ = hmac(fkS, H7); verify SF’ ?
= SF

13. c: ds.Verify(pkS, label11 || H6, SCV) ?
= 1

14. b: fkC = hkdf.exp(CHTS, “finished” || “ ”)
15. c: CF = hmac(fkC, H9); send CF in mCF

16. s: CF’ = hmac(fkC, H9); verify CF’ ?
= CF

17. b: dHS = hkdf.exp(HS,“derived” || H(“ ”))
18. b: MS = hkdf.ext(dHS, 0)
19. b: CATS = hkdf.exp(MS, “c ap traffic” || H3)
20. b: SATS = hkdf.exp(MS, “s ap traffic” || H3)
21. b: (kCATS, ivCATS) = DeriveTK(CATS)
22. b: (kSATS, ivSATS) = DeriveTK(SATS)

Figure 2.5.: TLS 1.3 specification of session parameters. Characters at the beginning of lines
indicate if the server s, the client c, or both parties b call the functions per line.

Transport Layer Security (TLS)

TLS is a standardized suite of cryptographic algorithms to establish secure and authenticated
communication channels between two parties. TLS exists in different versions; TLS 1.2 and
TLS 1.3. Generally, TLS has two phases, where the handshake phase derives cryptographic
parameters to secure data sent in the record phase. TLS relies on the algorithms of Hash-based
Message Authentication Code (HMAC) and HKDF to securely derive cryptographic parame-
ters and relies on digital signatures to authenticate parties (cf. ds.Sign, ds.Verify, hkdf.ext,
hkdf.exp, hmac in Figure 2.5). We provide further details of TLS-specific security algorithms
in Section 2.2.2 and present TLS-specific transcript hashes, labels, and key derivation functions
of traffic keys in Table 2.1.
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Handshake Phase:

1. Key Exchange and Key Derivation: To establish a secure channel between a server
and a client, TLS relies on the Diffie-Hellman Key Exchange (DHKE) to securely
exchange cryptographic secrets between two parties (cf. Figure 2.5, lines 1-4). For
example, with TLS 1.3 configured to use elliptic curve cryptography, parties protect
secrets x, y with an encrypted representation X, Y and exchange X, Y via the Client
Hello (CH) and Server Hello (SH) messages mCH, mSH. With access to X, Y, only the
client and server can securely derive the Diffie–Hellman Exchange (DHE) key, where
DHE = x · y · G = y · X = x ·Y holds. Both parties continue to use DHE to derive traffic
secrets. In the TLS 1.3 One Round-trip Time (1-RTT) mode, the server is able to encrypt
all server-side handshake messages after receiving a supported client key share in the
CH message mCH.

In contrast, TLS 1.2 exchanges the messages mCH, mSH in plain and refers to the DHE
value as the premaster secret. TLS 1.2 uses the premaster secret together with the client
and server randomness to derive a master secret, which, in turn, is used to derive
traffic secrets. When TLS 1.2 is configured to used AEAD based on stream ciphers, TLS
1.2 generates two application traffic keys to secure record phase traffic (kCATS, kSATS).
Otherwise, if TLS 1.2 uses a Cipher Block Chaining (CBC) mode to encrypt records, TLS
1.2 generates additional Message Authentication Code (vMAC) keys. In contrast to the
GCM mode, the CBC mode counts as key-committing [56], [57], which guarantees the
existence of a non-ambiguous mapping between traffic secrets and authentication tags.
Per default, TLS 1.3 generates two keys (kCHTS, kSHTS) to secure handshake traffic and
generates two keys to secure record traffic (kSATS, kCATS). Due to the key-independence
property of TLS 1.3 [73], disclosing handshake traffic secrets (e.g. Server Handshake
Traffic Secret (SHTS)) does not compromise the security of record traffic secrets. For
instance, to compute the Server Application Traffic Secret (SATS), a party requires access
the Handshake Secret (HS). Even though, HS is used to derive SHTS (cf. line 5 of
Figure 2.5), hkdf.exp prevents the reconstruction of HS from SHTS.

2. Authenticity: To mutually authenticate each other, both parties exchange certificates
and compute authentication parameters (cf. Figure 2.5, lines 9-16). Notice that in
TLS, client-side authentication is optional, which is why we omit client certificates
in Figure 2.5. But, we show the computations of the Server Finished (SF) and Client
Finished (CF) values, because, to constitute an authenticated TLS session, both parties
must successfully exchange and verify the SF and CF messages mSF, mCF. For server-
side authentication, the server computes the certificate verification value (e.g. SCV),
which binds a PKI X.509 certificate to the TLS transcript via a digital signature [74].
Here, the signature is computed with the server secret key skS and is verified with the
corresponding server public key pkS. The client obtains the server public key pkS in the
PKI certificate and aborts the TLS session if the signature verification fails.

29



2. Preliminaries

Client / ProverProxy / VerifierServer

Figure 2.6.: Illustration of the Three-party Handshake (3PHS) and exchanged cryptographic
parameters between the server, the proxy, and the client. The gray box at the
bottom indicates the relationship between shared client-side secrets Zv and Zp,
which corresponds to the session secret Zs of the server.

Record Phase: The TLS record phase requires parties to protect data with Authenticated
Encryption (AE) algorithms before data can be exchanged. AE algorithms translate plaintext
data pt into a confidential and authenticated representation (ct, t), with ciphertext ct and
authentication tag t. Ciphertext data is computed based on block or stream cipher algorithms
and depends on keys established in the handshake phase. We elaborate on TLS data protection
algorithms in the Appendix 2.2.2.

Three-party Handshake

In the 3PHS (cf. Figure 2.6), each party picks a secret randomness (s, v, p) and computes its
encrypted representation (S, V, P). By sharing V + P = X with the server in the CH, the
server derives the session secret Zs = s · X, which corresponds to the TLS 1.3 secret DHE.
When the server shares S in the SH, both the proxy and client derive their shared session
secrets Zv and Zp respectively such that Zs = Zv + Zp holds. In the end, neither the client
nor the verifier have full access to the DHE secret of the TLS handshake phase. The 3PHS
works for both TLS versions but in Figure 2.6, we show a TLS 1.3-specific configuration based
on the Clliptic Curve Diffie–Hellman Exchange (ECDHE), where the parameters (e.g. Zp) are
EC points structured as P = (x, y).

Elliptic Curve to Finite Field (EC2F) Conversion

The ECTF algorithm is a secure 2PC protocol and converts multiplicative shares of two EC
x-coordinates into additive shares [11], [12]. Figure 2.7 shows the computation sequence of
the ECTF protocol which makes use the vector MtA algorithm defined in Section 2.2.2. By
running the ECTF protocol, two parties p1 and p2, with EC points P1, P2 as respective private
inputs, mutually obtain additive shares s1 and s2, which sum to the x-coordinate of the EC
points sum P1+P2. TLS oracles use the ECTF protocol to transform the client-side EC secret
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ECTF between two parties p1 and p2.

inputs: P1 = (x1, y1) by p1, P2 = (x2, y2) by p2.
outputs: s1 to p1, s2 to p2.

p1: (sk,pk)=mta.Setup(1λ); send pk to p2

p1: ρ1
$← Zp; c1=mta.Enc([−x1,ρ1], sk); send c1 to p2

p2: ρ2
$← Zp; (c2,β)=mta.Eval(c1,[ρ2,x2],pk); δ2=x2 · ρ2+β; send (c2,δ2) to p1

p1: α=mta.Dec(c2,sk); δ1=−x1 · ρ1+α; δ=δ1+δ2; η1=ρ1 · δ−1;
c1=mta.Enc([−y1,η1],sk); send (c1,δ1) to p2

p2: δ=δ1+δ2; η2=ρ2 · δ−1; (c2, β)=mta.Eval(c1,[η2,y2],pk); λ2=y2 · η2+β;
send c2 to p1

p1: α=mta.Dec(c2,sk); λ1=−y1 · η1 + α; c1=mta.Enc([λ1],sk); send c1 to p2

p2: (c2,β)=mta.Eval(c1, [λ2], pk); s2 = 2 · β + λ2
2 − x2; send c2 to p1

p1: α=mta.Dec(c2,sk); s1 = 2 · α + λ2
1 − x1

Figure 2.7.: The Elliptic Curve to Field (ECTF) algorithm converts multiplicative shares in
form of EC point x-coordinates from points P1, P2 ∈ EC(Fp) to additive shares
s1, s2 ∈ Fp. It holds that s1 + s2 = x, where x is the coordinate of the EC point
P1 + P2.

shares Zv and Zp into additive shares sv and sp [11], [12]. Since the relation sv + sp = x for
(x, y) = Zs holds, it becomes possible to follow the TLS specification by using secure 2PC
based on boolean garbled circuits with bitwise additive shares as input.

Semi-honest 2PC

Secure 2PC allows two mutually distrusting parties with private inputs x, y to jointly compute
a public function f (x, y) without learning the counterparty’s private input [75], [76]. A 2PC
system based on boolean garbled circuits involves a party p1 with input x as the garbler
and party p2 with input y as the evaluator. Party p1 is supposed to generate the garbled
circuit G(C), where the boolean circuit C implements the logic of the public function f (cf.
Figure 2.8). To generate the garbled circuit, p1 randomly samples wire keys k0

L, k1
L and a

signal bit σL at every wire wL. For the purpose of evaluating the function f , wire keys ki
L

encode binary data representations of f using internal labels i. The purpose of signal bits
is twofold. Signal bits encrypt internal bits to external bits eL=σ⊕ i which can be shared
with p2. With that, signal bits enable the evaluator to discover valid entries of garbled tables
G(C) through external bits e [77]. Further, signal bits randomize garbled truth tables G(C) to
obfuscate truth table bit mappings.

Once wire keys, signal bits, and external labels exist, p1 computes the garbled table entries
as follows. Per row of table G(C) (cf. Figure 2.8), the bit tuples in the left column are
combinations of external labels which correspond to incoming gate wires. The right column
contains double encrypted wire keys that correspond to outgoing gate wires. For gates
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Figure 2.8.: Example of a garbled circuit C expressing the function f of a secure computation
via boolean logic gates. Every circuit wire wL is encoded with secret internal labels
i, a secret and random signal bit σL, external labels e=σL⊕ i (where i, e, σ ∈ {0, 1}),
and wire keys ki

L. Internal labels are associated with input data bits and the lists
T l−d map output labels to output data bits. The gate-wise garbling tables G(C)
map tuples of external labels to garbled labels concatenated with external labels.
Output wires have neither external labels nor signal bits.

yielding output labels, garbled entries encrypt wire keys. For intermediate gates, garbled
entries encrypt wire keys concatenated with corresponding external labels.

After garbling a circuit, p1 shares G(C), T l−d, and, if x=[1,0], (k1
a, e=0) and (k0

b, e=1) with
p2. To obtain wire keys that correspond to the input bits of y, p2 interacts with p1 in two
1-out-of-2 OT protocol executions. The OT1

2 scheme involves two parties where party p1 sends
two messages m1, m2 to party p2 and does not learn which of the two messages mb is revealed
to party p2. Party p2 inputs a secret bit b which decides the selection of the message mb. In
this work, we make use of the OT1

2 scheme defined in the work [48], which does not require
a trusted setup. The trusted setup procedure introduces a third party which (i) takes over
the generation of cryptographic material and (ii) is trusted to delete the underlying random
parameters of the material.

The OT protocol requires p1 to share ky
e , ky

d with corresponding external values with p2.
Further, the OT scheme gives p2 access to the keys (k0

c , e=0) and (k1
d, e=0) if y=[0,1], and

prevents p1 from learning p2’s selection of wire keys. With access to G(C), input wire keys
and corresponding external labels, p2 is able to evaluate the garbled circuit. To evaluate the
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first output bit, p2 decrypts the third entry of table G(C0,(1,2)
AND ) and obtains (k0

e , e=0). With that,

p2 continues to decrypt the first entry of table G(C1,(0,1)
AND ) to obtain k0

f (cf. Figure 2.8). Last, p2

decodes k0
f using the decoding table T0

l−d to obtain the first output bit 0. If required, p2 shares
the obtained 2PC output back to p1.

Maliciously Secure 2PC

Multiple approaches have been proposed to construct maliciously secure 2PC.
Cut-and-Choose Paradigm: The cut-and-choose paradigm requires the garbler to prepare

n garbled circuits out of which the evaluator randomly picks one. After the random choice of
the evaluator, the garbler is supposed to share the parameterization of all garbled circuits
except for the one chosen by the evaluator. With all circuit parameters, the evaluator can
check the correctness of the obtained garbled circuits and aborts if any failure is detected. If
the check at the evaluator succeeds, then both parties continue to use the circuit chosen by the
evaluator to proceed with the semi-honest 2PC protocol [78]. The cut-and-choose paradigm is
expensive with regard to bandwidth requirements and gives a malicious garbler a 1

n chance
in being caught.

Authenticated Garbling Paradigm: The concept of authenticated garbling adds information-
theoretic MACs to the entries of garbled tables. As a result, the garbled tables are secret
shared between both parties via the information theoretic authentication bits. After garbling
the circuit, the garbler sends her shares of the garbled tables to the evaluator. The evaluator
is able to authenticate each masked bit that is learns. Due to the fact that the 2PC function
is public, the evaluator is able to check the circuit correctness by evaluating the information
theoretic MACs according to the public function [79]. The concept of authenticated garbling
is the most efficient approach to achieve maliciously secure 2PC. However, due to the fact that
our optimizations mostly rely on semi-honest 2PC systems, we consider another approach of
maliciously secure 2PC.

Dual-execution Paradigm: We consider the work [80] to secure semi-honest 2PC against
malicious adversaries. The 2PC dual-execution protocol runs two instances of the semi-honest
2PC, where both parties p1 and p2 successively act as the garbler and evaluator [80]. Before
any 2PC output is shared with the counterparty, the protocol runs a secure validation phase
on obtained outputs. The validation phase checks if both semi-honest 2PC executions yield
the same output.

Secure 2PC using the dual-execution mode is susceptible to a single bit leakage. However,
if the input is random and leaking even the most significant bit does not yield any advantage,
then using this technique is sufficient. The key derivation functions in TLS oracles (e.g. 2PC
SHTS circuit) depend on sufficiently random inputs with secret shared input parameters.
Thus, applying the dual-execution mode in TLS oracles is feasible [81].

Intuition of the Dual-execution Mode: The idea of the mutual output verification is as follows.
If p1, as the evaluator, obtains output wire keys kx and output bits b from a correctly garbled
circuit of p2, then p1 knows which output labels ky according to b p2 must evaluate on a
correctly garbled circuit of p1. Thus, if p1 shares a commitment in form of a hash H(ky||kx)
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with p2 after the first circuit evaluation, and p2 returns the same hash H(ky||kx) after the
second circuit evaluation, then p1 is convinced of a correct garbling by p2. Because, if p2

incorrectly garbles a circuit, then p1 obtains the bits b’. And, if p1 correctly garbles a circuit,
p2 obtains correct bits b. The incorrect bits b’ lead p1 to a selection of labels k’x and k’y and
the correct bits b lead p2 to a correct selection of ky ̸= k’y. Since p2 does not know which
output keys p1 evaluates, p2 cannot predict any keys k’x, k’y which lead to the hash that is
expected by p1. To communicate the output of a maliciously secure 2PC to a single party,
only the first garbler is required to share the output decoding table with the counterparty.
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In order to solve the existing misalignment between data protection and consent, we re-assess
online identity under consideration of latest technological developments in the field of data
privacy and security. To address the emerging requirements and liabilities of data protection,
we explore the interplay of PETs and decentralized public infrastructures. Further, we seek to
equip data controllers with strong data sovereignty capabilities at all times. This involves the
right and power to publish the policy-driven consent or revocation of any digital agreements.
As the core enabler of sovereign online identity, we rely on persistent access to cryptography
at the data controller itself. Such that at least a share of custody remains connected to an
accountable online identity. The first two contributions of this work follow the above stated
principles and facilitate the expression of consent on protected digital data.

In more detail, we introduce new approaches to manage digital identifiers and associated
data in the following sections. Our approaches equip end devices with new data sovereignty
and privacy guarantees and improve the interplay between PETs and decentralized public
infrastructures. We divide our contributions [82] and [83] into two sections. In Section 3.2,
we investigates the secure verification of ZKPs at smart contracts. Based on our findings, we
propose a new identity system, called Portal, where end devices maintain the authority of
private data administration. In Section 3.3, we investigate privacy-preserving authorization
techniques enabled by cryptographic accumulators. We apply our findings in the context
of data certification systems and secure the policy-driven attestation of private data. Before
we present our contributions, we outline important insights and challenges which guide
our research. Our insights and challenges are the result of another contribution [84] which
systematizes the scope of data sovereignty that is achievable today.

3.1. Systematization of Data Sovereignty

In this work, the definition of data sovereignty concerns the notion of how much control
over data a device can obtain and maintain when participating online. This involves the
administration of identifiers and associated data, access control to data, and the outsourced
processing of data. Data sovereignty can also be defined with regards to the geographical
location of data [85]. Here, the sovereignty of data is determined by the geopolitical laws that
apply at the region where the data is managed. To exclude any danger of confusion, this
work considers the technical definition of data sovereignty proposed by our contribution [84],
where the sovereignty is defined as a notion of control via advanced cryptographic techniques.
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Figure 3.1.: The scope of data sovereignty with respect to the different fields of data manage-
ment. The process 1.X describes necessary functionalities to create and maintain
identifiers. The process 2.X indicates the functionalities of a certification system
which issues, presents, and verifies credentials. The process 3.X defines the func-
tionalities of accountable access control. The process 4.X achieves the strongest
notion of data sovereignty and defines the policy-driven processing of data that is
never disclosed.

3.1.1. Scope of Sovereignty

In terms of the technical notion, data sovereignty manifests itself in different forms depending
on the scope and type of the data that is managed (cf. Figure 3.1). According to the scope, data
sovereignty covers the fields of identifier management, data certification in form of credentials,
access control to data, and the policy-compliant processing of data [84]. Depending on the
type of data, data sovereignty concerns the accountable control, protection, and consent over
data. No explicit data protection is required if devices manage one-time public identifiers.
However, in this case, data sovereignty must ensure a persistent notion of control over the
digital identifier. If devices manage data attributes and credentials, data sovereignty concerns
the protection of access during data sharing and outsourced processing of data. In the
following, we summarize how much data sovereignty can be achieved today using advanced
cryptographic techniques.
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Identifier & Data Management

In traditional approaches of identity management, third-party service providers or interme-
diaries take over the custody to manage identifiers and data on behalf of devices. In this
scenario, devices have little sovereignty over how their data is being shared and processed.
The sovereignty over identifiers and data increases in the setting of decentralized public
infrastructures, where intermediary services are replaced by autonomous compute programs
such as smart contracts. The decentralized setting gives devices access to cryptographic key
pairs, which devices generate themselves (cf. step 1.1 of Figure 3.1). With access to key pairs,
devices are capable of answering key ownership challenges, which uniquely determine the
holder of a key pair. If keys are secret shared between multiple parties, then devices must
collaboratively answer key ownership challenges. Notice that devices have the power to
decide if any collaborative ownership setting should be established. Thus, devices are empow-
ered to determine if identifiers or data should be administered individually or with shared
custody. Further, key pairs can be used to authenticate data via digital signatures, which
unequivocably bind data to the key holders. Signatures authenticate the transaction-based
computing in decentralized public infrastructures. Hence, key holders have the opportunity
to create, update, or deactivate digital agreements transparently (cf. steps 1.2-1.4 in Figure 3.1).
The immutability and availability guarantees of the public infrastructure ensure that devices
remain accountable at all times.

Policy-driven Data Attestation

To increase the trust on data attributes that are associated with an identifier, data holders
typically request and obtain attestations in form of credentials (cf. steps 2.1-2.2 in Figure 3.1).
Credentials are either issued by services that witness online activities of data holders. Other-
wise credentials are issued once certain facts on the data have been verified successfully. The
verified statement is typically carried by the credential itself and counts as a policy. Online
services assume that the data complies with the policy expressed by the credential.

If devices present credentials to data consumers (e.g. web services), then consumers audit
the credential via a certification chain. The certification chain is a collection of connected
credentials which lead the consumer to a root attestation. The root attestation must be trusted
by the consumer. Further, if consumers do not trust the certification system, then consumers
abort the acceptance of credential presentations. In the traditional web, credentials are issued
to web services or intermediate end points. Only in rare occasions, end devices obtain access
to credentials (e.g. S/MIME email certificates at client programs). The idea of sovereign
identity reconsiders credential management and brings credential management down to
end devices. As such, users as credential holders have the power to decide if and to whom
credentials should be presented (cf. step 2.3 in Figure 3.1). Decentralized credentials are
connected to a key pair of the data holder such that the key ownership challenge additionally
determines credential ownership. Consumers are supposed to resolve certificate chains via
publicly accessible infrastructures. Equally as in the traditional web, attesting parties maintain
the right to revoke credentials.
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To enhance the sovereignty of data privacy in decentralized certification systems, recent
approaches have constructed anonymous credential schemes, which are powered by ZKP
technology and group signature schemes [40], [86].

Policy-driven Access Control

If identifiers, data, and credentials reside at end devices, then, as a natural consequence, the
question emerges if and how the administration of access control mechanisms can be shifted
to the end device. In order to maintain strong sovereignty guarantees, access control policies
should reside in the hands of the data controllers. In addition, the data holder should be
capable of verifying the accountability of access seeking consumers before access is granted.
Otherwise, consumers have the potential to circumvent promises made before receiving
access.

The system design to achieve decentralized access control with strong data sovereignty
guarantees is depicted via the third process in Figure 3.1. Here, data holders use a symmetric
encryption key to protect data. Protected data can be safely stored externally. Next, the key is
threshold secret shared with a committee of access controllers due to the fact that current
blockchains have no support for secret management [87]. Subsequently, devices upload
an access policy to the public infrastructure. Once the access policy is publicly available,
consumers have to post policy-compliant transactions to the public infrastructure. This way,
the data holder is empowered to determine how consumers authenticate for data access.
Typically, the access policy sets a timestamp which upon expiry allows consumers to claim
access from the committee of access controllers. This mechanism ensures that consumers
commit to agreements made in the access policy before access is granted. If consumers
claim access, then the secret management committee audits the public infrastructure for
the policy-compliant transactions of requesting users. If consumers can be associated with
compliant access transactions, then individual parties of the committee release secret shares
of the symmetric encryption key to the consumer. With access to a threshold number of secret
shares, consumers reconstruct the encryption key. Since the access policy conveys the storage
location of protected data, consumers are able to download protected data and decrypt it
with the symmetric key [88].

Policy-driven Data Processing

Concerning data sovereignty, every access control scheme faces a common problem. Data
counts, by it’s nature, as non-rival. This means that data can be easily copied once access has
been obtained. If a copy exists, the rivalry of creating the same data instance is lost. Data
non-rivalry is problematic because the original data holder cannot impose or enforce any
ruling on how a shared data instance should be treated. This opens the door for undetected,
unintentional use of shared data at consumers.

The only way to solve the problem of data non-rivalry is to prevent access to the data
instance x itself. Instead, consumers can be granted access to a function output f (x) which
processes the data instance x. It must hold that the consumer never learns any information on
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the inputs x of the function f . This requirement can be ensured if the function f is evaluated
using secure computation techniques (cf. Section 2.2.3). Further, it must hold that the function
evaluation itself does not leak any information to the consumer (e.g. through side channels).
The security technique of differential privacy guarantees that the execution of an algorithm
leaks less than an ϵ-threshold of information to the consumer [89].

To enable policy-driven data processing, devices need the capability to verify the compliant
data processing according to a policy (cf. process 4.X in Figure 3.1). Here, the policy defines a
sequence of transactions that must appear before the consumer is granted access to a function
output. As such, the access committee must audit the compute program on the support of
differential privacy and the secure implementation of security algorithms which protect the
inputs. Further, if a compliant program is executed, the compute node is required to post a
proof of correct function evaluation to the public infrastructure. If all requirements defined
by the policy are met, the access control committee atomically releases the function output to
the consumer [90].

3.1.2. Insights & Challenges

Even though constructing a strong notion of data sovereignty is possible using advanced
cryptographic techniques, it remains to investigate the practicability and tradeoffs between
different technical solutions. Further, the question remains how much sovereignty a user
or device need in order to perform existing online functionalities. We define key insights
and challenges of sovereign identity and credential management next with the goal to solve
identified issues with our contributions.

As a first insight, we notice that the construction of strong sovereignty notions do no align
with existing online functionalities. For instance, it remains a challenge to design a complete
sing-on system in the context of decentralized public infrastructures with equal capabilities
as dominating solutions such as OAuth 2.0 or OpenID Connect. At the same time, it remains a
challenge to integrate enhanced data sovereignty and privacy concepts. Because, until today,
most decentralized public infrastructures lack native support of verifying PET technologies
such as ZKPs [25]. Further, PET technologies must be adapted or potentially advanced to
reflect the self-determined control of an individual or a collective.

As a second insight, we notice that the emerging field of decentralized computation
and data management yields plenty of novel approaches. For example, the W3C actively
standardizes the concept of decentralized identifiers [29] and verifiable credentials [31] in the
context of public infrastructures. However, is remains unclear if the standardized concepts
match with real-world requirements that are imposed by decentralized public infrastructures.
We address this challenge by investigating if and how novel proposals respect sovereignty
guarantees for all involved stakeholders.

The following sections explain how our research contributions solve core challenges of data
consent and protection in the decentralized context. Our contributions address the above
stated challenges and support the self-determined protection of digital data during online
interactions.
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Figure 3.2.: a) Overview of the Single Sign-On (SSO) delegated authentication and authoriza-
tion where the user agrees to a fixed policy (red box) of the Identity Provider
(IdP). Bold arrows indicate user-to-IdP interactions which track user activities.
b) Simplified view of the Portal identity system, where users manage data and
authenticate towards web services with self custody. © 2024 IEEE

3.2. Time-bound and Replay-resistant Proofs on Public Blockchains

As initially stated, latest identity systems rely on public blockchains to enhance user autonomy
and reduce tracking from conventional identity providers. At the same time, identity systems
integrate novel technologies such as zero-knowledge proofs (ZKPs) to improve data privacy
and data compliance. We show that a naive verification of ZKPs at smart contracts enables
replay attacks: Attackers can replay ZKPs at arbitrary times without having access to the
private inputs that are required for the computation of the ZKP. To solve this problem, we
construct a transaction sequence which verifies time-bound and replay-resistant ZKPs at
smart contracts. Our construction introduces an additional but constant fee of 0.14$ per
verification of a ZKP on the public blockchain Ethereum. With our new construction, we
propose Portal, a novel identity system for decentralized single sign-on.
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Motivation: Almost every service of today’s web manages users based on an identifiable
session and requires a mechanism to authenticate users beforehand. The user authentication
uniquely identifies every user of the system and guarantees that the session is unique to one
user. To avoid each web service from implementing their own identity and authentication
system, OpenID Connect, as the latest SSO protocol, was standardized in 2014 [21]. The SSO
paradigm delegates user authentication at a web service towards a third-party IdP, which
handles the unique identification of the user. Once the user logs in at the IdP, the IdP shares a
token with the user, which, upon reloading the connection to the web service, is shared to and
used by the web service to authenticate the user (cf. top half of Figure 3.2). OpenID Connect
is an authentication layer in the OAuth 2.0 protocol, which, beyond user authentication,
delegates access control of user resources via an authorization server. It is common that the
same organization running the IdP operates the authorization server [91]. In OAuth 2.0, the
user can agree to a fixed policy of the IdP which determines the access privilege of the web
service towards user data.

Even though delegated authentication and authorization via SSO is very convenient and
cheap for users and web services, IDPs gain the option to track every log in and data access of
a user. Further, since IDPs share fixed policies, which users must agree or disagree to, users lack
control and responsibility over deciding which and how data is shared with the web service.
To solve the misaligned incentives between all parties, recent approaches such as SIWE [27]
leverage new technologies and replace the IdP with a public blockchain. Blockchains return
data responsibility back to users and distribute the single trusted IdP over an open network
of trustless validators. Blockchain validators securely update an agreed-upon global state
of accounts by verifying transactional state updates which are controlled by users. Thus,
the global state of accounts depends on externally-issued transactions that are owned by
users, and, with that, provide users with new notions of data sovereignty, self-custody, and
autonomy [84]. Beyond SIWE, novel privacy enhancing technologies such as ZKP systems led
to a reconsideration to standardize identity systems [29]–[31]. For instance, Polygon ID [92]
employs ZKP technology to enhance data privacy and data compliance of users. Further,
modern identity systems rely on certification ecosystems, where issuers verify and attest
to data claims made by users [93]. We notice that recent works rely on assumptions (e.g.
existence of trustworthy issuers) which go beyond the requirements of SSO systems [55], [86],
[94]. Because, in the trust establishment phase of SSO systems, users agree to the IDPs’s terms
and conditions which require users to honestly create profiles without requesting specific
credentials [21].

Challenge: With this contribution1 and according to the requirements found in SSO systems,
we investigate the honest creation and management of user data, which does not require any
form of third-party attestation. In this scenario, we entirely rely on the interaction between
users and smart contracts, where smart contracts verify the data claims made by users. To
create a claim on a data sample, users convince smart contracts that the data sample complies

1Major parts of this Section 3.2 are subject to copyright protection: © 2024 IEEE. Reprinted, with permission, from
[Lauinger, Bezmez, Ernstberger, Steinhorst, Portal: Time-Bound and Replay-Resistant Zero-Knowledge Proofs
for Single Sign-On, IEEE International Conference on Blockchain and Cryptocurrency (ICBC), May/2024] (cf.
Appendix D).
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with a public statement. If the smart contract successfully verifies the claim, then the smart
contract accepts a mapping between a data claim and the address of the user. If users create
claims on private data, then the smart contracts validate ZKPs asserting the claim. Based on
accepted claims, users can authenticate to any third party.

We find that replay attacks are a concern because blockchain logs transparently expose ZKP
bytes in transaction payloads. Thus, adversaries are able to replay any claim by re-executing
the same contract functionality using previously exposed payloads. This is problematic as
adversaries can prove statements without access to the private witness that is necessary for
the ZKP computation.

Contribution: We show that replay attacks can be prevented. To do so, we introduce a new
transaction sequence which unequivocably binds the proof computation to a specific user and
time (cf. Section 3.2.2). Instead of using a verifier-chosen nonce that binds a proof presentation
to a verification session [55], [95], our transaction sequence relies on the blockchain Proof of
Stake (PoS) randomness as the verifier-chosen nonce. Our transaction sequence achieves an
efficient cost structure as it does not require additional contracts that prevent replay attacks
(e.g. access control smart contracts [54]). Based on this contribution, we propose a novel
identity system, called Portal, which supports on-chain and off-chain validations of ZKPs on
user data during user authentication (cf. bottom part of Figure 3.2). Portal targets the research
gap to provision an alternative SSO solution, which (i) prevents user tracking through IDPs,
and (ii) extends the concepts of SIWE by integrating recent advances of data sovereignty
and privacy (e.g. through blockchains and zkSNARK technology [55], [66]). Beyond our
initial challenge, we show how Portal supports attestations in the form of credentials and
delegations. Credentials are signed claims of a user which have been attested by a trusted
issuing third-party. Delegations embody claims signed by users and are passed from one user
to another. Attestations may be revoked by the issuing party. Portal supports an on-chain
and off-chain management of claims and attestations, and allows users to authenticate in the
off-chain or on-chain context. In summary,

• Our new transaction sequence secures on-chain ZKP verifications against replay attacks
(cf. Section A.1).

• We propose Portal, an alternative SSO solution with enhanced privacy and control (cf.
Section 3.2.3).

• We open-source2 our proof of concept of Portal and evaluate operation costs (cf. Sec-
tion 3.2.4).

Disclaimer: In systems with strong Know Your Customer (KYC) requirements, where users
cannot be trusted to responsibly operate claims, we want to highlight that Portal should be
used with third-party attestations.

2https://github.com/jplaui/portal
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3.2.1. System Model

This section defines the data model, system goals, and roles.

Data Model

Key pairs are the public and private keys of a PKC system.

Addresses are derived from a user’s public key and exist as 42-character hexadecimal strings
appended with ’0x’.

Wallets W generate and maintain key pairs and, with that, control the address Waddr corre-
sponding to the key pairs.

Data items are key-value pairs, where the key string is a descriptor of the value instance that
expresses the data.

Statements ϕ="key-op-comp" are strings that express relations between a value comp and a

data item with key=key. Statements use at least one key, one operator op (e.g. >,<, ̸=, ?
=,∈,

etc.) and one comparison value comp (e.g. threshold).

Claims exist as public claims claimpub={d, ϕ,t} and as private claims claimpriv={d, ϕ, L, eid,t}.
Public claims include the data item d, a statement ϕ, and a timestamp t. If the data item of
claimpub is stored externally, then d is set to a location identifier d=L. Private claims include a
data item d, a statement ϕ, a location identifier L, an event identifier eid, and a timestamp t.
In claimpriv, the value instance of d is data hiding (e.g. a commitment string c as d["age"] : c)
and the location identifier points to a circuit storage address as L=LpΠ .

Attestations rely on a signature σ=pk.Sign(texp, claim, Epk, id) with expiration time texp,
endorser public key Epk, claim name nameclaim, and attestation identifier id. No expiration
time is set with texp=null. With the signature parameterization, we define an attestation as a
tuple a={σ, texp, Epk, nameclaim, id}. In Portal, attestations comprise credentials and delegations.
Users issuing credentials are called issuers. Credentials confirm statements which hold on
verified claims. Credentials can be verified by any third party that trusts the issuer. Delegations
are marked with ϕ=null and allow a user as the delegate to legitimately present a claim of
another delegating user.

Revocations are tuples rev={Waddr, t, sstatus, id} with the wallet address Waddr that holds the
revoked attestation, a timestamp t, a status string sstatus, and the revocation identifier id.

Circuits are tuples pΠ={C, ϕ, ccsC , wpub, pk, vk, LC}, where the compiled constraint system ccsC
expresses a provable representation of a circuit C that implements the assertions expressed by
the statement ϕ. To assert statements, the circuit C evaluates private inputs w to a representation
which can be compared against public inputs wpub. The prover and verifier keys pk,vk are
created by running the setup algorithm zk.Setup of a proof system Π. If the verification call
of the circuit C is deployed as a smart contract, then the locator LC is set to the address of the
circuit contract. Otherwise, LC=null.

Transactions are tuples tx={σ, dpl , taddr, gused} with a signature σ from the transaction sender,
a data payload dpl , a gas value gused and a destination address taddr. Transactions are used to
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invoke and pay for smart contract calls at an address taddr and provide non-repudiation of the
transaction sender.

Registry contracts Creg maintain a map m[Waddr]Cid
addr linking registered wallet addresses and

addresses of identity contracts. Creg exposes a register method which requires the transaction
payload to include an identity service signature on a new identity contract address. Further, for
the identification of circuits, Creg maintains a map m[nameC ]LpΠ which associates location
identifiers of circuit parameters LpΠ with circuit names nameC .

Identity contracts Cid maintain the parameters claims, attestations, and revocations in the
respective maps m[nameclaim]claim, m[nameatt]a, and m[aid]rev, where aid is an attestation
identifier. Claim and attestation names nameclaim, nameatt are unique strings.

Circuit contracts CC verify ZKPs on-chain and emit events eid according to the outcome of a
ZKP verification. Circuit contracts expose the sample and verify methods. If a transaction calls
the sample method, then CC associates a PoS randomness as a nonce with the wallet address
of the user in a map m[Waddr]nonce. The randomness is used during the verify method which
verifies a ZKP.

System Roles

Users hold wallets, deploy identity contracts, and register the address of the identity contract
at the registry contract after passing an authenticity verification at the identity service. Users
individually manage claims and attestations, and authenticate themselves at third-party services
by linking or presenting data. Users count as issuers in the context of signing and sharing
credentials towards other users.

Identity services deploy and maintain registry and circuit contracts and connect users to the
Portal identity system. We envision non-profit organizations to take the role of the identity
service and assume that identity services have the expertise to create secure ZKP circuits which
evaluate claims of users.

Third-party services (e.g. web services) authenticate users based on the Portal identity system
and trust issuers.

Blockchain networks provide decentralized and verifiable computation and storage through
smart contracts and manage registry, identity, and circuit contracts.

Storage networks provide decentralized, fault-tolerant, and high-availability storage of data
at locations L and are used to store larger data objects such as circuit parameters pΠ.

System Goals

Sybil resistance prevents an adversary to register an arbitrary amount of pseudonymous
identities.

Decentralized resolution guarantees that the storage and computation of user data remain
publicly verifiable, trustless, and available towards a resolving third-party service.
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assertClaim(d, pMT, Waddr, n; rootMT, Waddr, n, ϕ):

1. assert: n ?
= n; Waddr

?
= Waddr; 1 ?

= fϕ(d)

2. return: 1 ?
= cs.Open(pMT, d, rootMT)

Figure 3.3.: ZKP circuit to verify a data item d of a private claim against a MT commitment
rootMT. The MT has a depth of 5 and a path pMT as the private witness. The circuit
has 9.29K constraints and evaluates d against ϕ="d[age]->-18" using the function
fϕ. The semicolon ; separates private inputs (left of ;) from boldly formatted
public inputs (right of ;). © 2024 IEEE

On-chain & off-chain verification of private data allows users to (i) present data to a third-
party service, where the data has been verified at smart contracts or (ii) interactively convince
a third-party service of a data verification. The on-chain management of data guarantees that
the storage and computation of user data remain publicly verifiable, trustless, and available.

User-centricity gives users full control to manage data. Transactions in Portal are independent
of identity services or third-party services and depend on users and issuers only.

Accountability gives attesting parties the option to revoke an attestation. The user remains
publicly accountable with respect to revoked attestations.

Data-provenance allows users to present claims to third-party services, such that the origin and
correctness of the presented data item can be publicly verified.

Cost-efficiency optimizes operation costs for third-party and identity services and enables
scalability of Portal with cheap maintenance costs for the identity service.

Threat Model

We assume that transactions sent to blockchain nodes are secured via TLS such that the
TLS properties of message confidentiality, integrity, and authenticity hold. We assume that
(i) honest users are able to resolve the correct state st of the blockchain at time t, that (ii)
collision resistant hash functions are used in the blockchain PoS protocol to determine the
block randomness [96], and (iii) active, adaptive, and PPT adversaries that are able to perform
machine-in-the-middle (MITM) attacks and intercept communication traffic. Adversaries are
not able to block traffic indefinitely and cannot modify intercepted traffic. Adversaries have
access the mempool, can access transaction payloads by observing blockchain logs, and replay
transactions tx or ZKPs of a user.

3.2.2. Constructing Time-bound and Replay-resistant ZKPs

In the following paragraphs, we outline why ZKP verification at smart contracts is insecure.
Subsequently, we propose a solution to the highlighted problem.
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ZKP Verification at Smart Contracts

As the initial setup, we assume access to a circuit tuple pΠ, which has been instantiated by a
trusted party p0. The party p0 derives the solidity verification code of C1 ∈ pΠ for the creation
and deployment of a circuit contract CC1 (cf. steps 1.4, 1.5 of Figure 3.4). Π uses a ZKP system
which compiles the circuit C1. The circuit C1 performs an address and nonce check, asserts
a private data item against a statement ϕ, and checks if the data item computes to a public
commitment string (cf. assertClaim logic of Figure 3.3). Now, a user as party p1 is able to
compile transactions with a payload that contains the bytes of a ZKP π, and call the deployed
contract CC1 for an on-chain verification of π.

Binding ZKP Computations to the PoS Randomness

In the following we define a transaction sequence where a user p1 compiles the transaction
tx1 to call the sample method of the contract CC1 . Upon receiving tx1, CC1 associates the latest
PoS randomness r with the user’s wallet address by depositing both parameters into the map
m[Waddr]nonce. Initially the randomness is concatenated with a state string to represent the
nonce as nonce=st.prevrandao||”-0”. After CC1 samples the nonce, users fetch and use the
deposited nonce to compute a ZKP π using the circuit C1. To prevent replay attacks and
ensure time-bound proofs (cf. Section A.1), the ZKP circuit C1 takes in and compares both the
user’s wallet address and the nonce as private inputs and public inputs. Notice that binding
values (e.g. the nonce) to a ZKP computation via public inputs is secure [95]. In a transaction
tx2, p1 calls the verify method of CC1 , which upon a successful verification of π, sets the nonce
to m[Waddr]st.prevrandao||”-1” and emits an event with an identifier eid. If party p1 presents
eid towards any third-party service, then the third-party service can use eid to resolve and verify
a successful on-chain ZKP verification via smart contract logs (cf. steps 2.1-2.8 in Figure 3.4).
We show the security of our construction in the Appendix A.1.

3.2.3. Portal Identity System

In the following subsections, we introduce the Portal protocol specification to manage claims
and attestations, and show how sybil resistance and data-provenance is achieved.

Architectural Considerations

To achieve a scalable system design, all operation costs are shifted towards the user. The
reason to shift operation costs to the user have two benefits. First, the cost for the identity
service is optimized to a minimum of paying the transactions to deploy the registry and circuit
contract. Secondly, as all transactions of the Portal system are issued by users, users remain
responsible and accountable for every action in the system. Even though any party is able to
pre-process, deploy and store circuit parameters pΠ, we see identity services, as Portal system
maintainers, as suitable providers of pΠ, and rely on the assumption that identity services have
the most expertise to construct secure ZKP circuits. Finally, depending on the size of managed
data items and circuits, we outsource storage to an external storage network (e.g. IPFS [34]).
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1.2 deploy

User

1.1 deploy

Portal Identity ServiceRegistry Contract

Identity Contract

Storage NetworkCircuit Contract

1.3 register

Third-party Service

1.4 init circuit

3.4 off-chain verify

Figure 3.4.: Portal architecture to manage a private claim. The system deployment, user regis-
tration, and the circuit pre-processing is indicated with dashed arrows (1.1-1.6).
The on-chain verification of private claims at time t1, and private claim presentation
towards a third-party service is depicted with solid lines (2.1-2.8). The live verifica-
tion at time t > t1 of a private claim is indicated with dotted lines (3.1-3.4). To add
a public claim, the user does not interact with the circuit contract. © 2024 IEEE

Bootstrapping

To bootstrap the Portal identity system, the identity service deploys a registry contract Creg,
which sets the identity service as the owner of the contract. With that, the identity service
withholds the rights to invalidate the contract Creg or remove registered users. Further, the
identity service pre-processes ZKP circuits C and stores circuit parameters pΠ at location
identifiers LpΠ (e.g. a IPFS Uniform Resource Locator (URL)) of the storage network. If the
circuit C verifies ZKPs on-chain, then the identity service deploys a circuit contract CC to the
public blockchain before storing pΠ externally. Notice that users or issuers are equally eligible
to deploy and maintain circuit parameters. However, we deem the identity service as the
most suitable party to manage ZKP circuits, and we anticipate that the identity service has the
expertise to compile secure ZKP circuits.
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Registration

The registration of a new user in the Portal system depends on two transactions. The first
transaction deploys the identity contract Cid of the user. In the same way as the registry contract,
the constructor of the identity contract sets the deploying party as the owner of the contract.
Only the owner of Cid is able to call methods which modify the state of Cid. In the Portal
system, users and issuers are both represented by identity contracts, where users modify claims
and attestations, and issuers modify revocations.

The compilation of the second transaction requires the user to obtain a signature σCid
addr

from

the identity service on the identity contract address. Before signing any Cid
addr, the identity service

verifies and deduplicates users, such that sybil resistance holds. Users use the second transaction
to invoke the register method at the registry contract Creg, which checks the signature validity
of σCid

addr
before including the user’s wallet address and Cid

addr into the map m[Waddr]Cid
addr. If the

user shares the wallet address Waddr with any third-party service, then the third-party service is
able to resolve Cid

addr via the map of the registry contract. From here, the third-party service is
able to obtain claims and attestations of the user. Before resolving any data via a user’s wallet
address, the third-party service verifies Waddr address ownership through a signature challenge.
In the same way as the SIWE sign-in challenge [27], our signature challenge demands the user
to compute a signature on a randomly sampled nonce with the corresponding wallet key pair,
where the nonce is sampled by the third-party service.

Claim Management

1. Public Claims claimpub are created by users and added to the identity contract Cid by
calling the claimpub method. If public claims are stored on-chain, then resolution times
are fast. Due to increasing transactions costs of claimpub for larger data sizes, our system
supports external storage of claims at locations Ls (e.g. IPFS URL) by setting d=Ls. If
data is stored externally, resolution times depend on the network delay of the storage
network.

2. Private Claims claimpriv can be managed in two distinct ways:

On-chain Verification In the first mode, which we call on-chain mode, users send
two transactions to the circuit contract CC (cf. solid lines 5,7 in Figure 3.4). The first
transaction calls the sample method, where CC associates the latest PoS randomness with
the user’s wallet address by depositing both parameters into the map m[Waddr]nonce.
Initially the randomness is concatenated with a state string to represent the nonce as
nonce=st.prevrandao||”-0”. After CC samples the nonce, users fetch and use the deposited
nonce to compute a ZKP. As already discussed in Section 3.2.2, this transaction sequence
prevents replay attacks and ensures time-bound proofs.

Notice: Replaying publicly accessible data cannot be prevented which is why this work
solves replay attacks of claims made on private data. However, if an adversary operates
claims on public data and cheats (upload false claim), then the blockchain properties
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guarantee that adversaries remain accountable once misbehaviour is detected. In this
case, the reputation of a user declines.

Once CC successfully verifies a ZKP at time t, CC sets the nonce at address Waddr to
m[Waddr]st.prevrandao||”-1” and emits an event with an identifier eid. Using eid, users
compile and add the private claim claimpriv to the identity contract C id. With that, any
third-party service is able to verify private claims via smart contract logs.

Live Verification The on-chain mode has one issue. If private claims are verified by
smart contracts, then claims can be outdated in the eyes of the third-party service. As a
remedy, the Portal system has the live mode which supports a verification of ZKPs at
verifier-chosen times. For that, the Portal plugin (cf. Section 3.2.3) at the third-party
service generates and shares a fresh nonce with the user at time t1 and selects a location
identifier of circuit parameters LpΠ . Before the circuit parameters are shared, the third-
party service resolves all Portal supported circuits through the map m[nameC ]LpΠ at Creg.
With LpΠ , users fetch circuit parameters from the storage network and compute a ZKP
with proof πt2 at time t2, where t2 > t1. The verifier-chosen nonce binds the ZKP
computation to time-bound session [55] (cf. dotted lines in Figure 3.4).

Attestation Management

Similar to how we classify claims, we consider attestations of two different types:

1. Credential: Attestations as credentials provide issuers with the option to attest to claims
of users. Issuers share attestations with users after verifying the data item d of a claim
against the statement ϕ of the claim. When attesting private claims, issuers are supposed
to verify statement compliance through a ZKP circuit which is indicated via the circuit
location identifier LpΠ of the claim. Once the user obtains the attestation a, the user is
able to add the attestation to the identity contract Cid by calling the setAtt method. By
sending the setAtt transaction to Cid, the user agrees to the attestation of the issuer. To
check the validity of the signature σclaim through the Portal plugin, issuers must create
an identity contract Cid and sign claims with the corresponding key pair.

2. Delegation: An attestation as a delegation provides a user u1 with the option to delegate
the rights of presenting a claim owned by u1 to other users ux. Users ux agree to and add
delegations a to the identity contract by calling the setAtt method. To check delegations
via the Portal plugin at the third-party service, both the delegating user u1 and users ux as
delegates require identity contracts.

Revocation: The issuer or delegating user withhold the rights to revoke any issued attestation.
To compile a revocation rev, the attesting party sets the status string to sstatus="revoked" and
sets the wallet address of the attested user u as Wu

addr. The moment at which the revocation is
effective is indicated by the revocation timestamp t. Every revocation is added to the identity
contract of the issuer or delegating user by calling the setRev method.

49



3. Sovereign Identity & Data Privacy

Portal Plugin

The Portal user authentication is handled by a single software plugin that runs at third-party
services. The software plugin serves the seamless integration of the Portal identity system into
the traditional web infrastructure and, for the third-party service, reduces the Portal points of
contact to a single module. The software plugin comprises client libraries that connect to and
resolve data from the storage network and the blockchain smart contracts. Further, we equip the
plugin with ZKP back end systems for the live verification of ZKPs.

An attestation is verified by the Portal plugin at the third-party service through a sequence
of actions. If any verification action fails, then the plugin aborts. If a user presents a wallet
address Waddr and an attestation name nameatt, then the plugin takes the known and fixed
address of the Portal registry contract Creg to resolve the user’s identity contract through the map
m[Waddr]Cid

addr. With nameatt, the plugin identifies the attestation entry a in Cid and obtains
the signature, the expiration time, and the claim name. After verifying the expiration time,
the plugin uses the claim name to resolve the claim, and the endorser public key Epk to resolve
the identity contract of the attesting party. Notice that the wallet address of the endorser Waddr
can be derived from the endorser public key Epk. With access to the Cid of the attesting party,
the plugin verifies revocation entries which are identified by the claim identifier aid. If the
revocation checks pass and no revocation entry is found, then the plugin continues to verify
the attested signature of the resolved claim by using the public key Epk.

Data Provenance

The Portal system allows a seamless integration of data provenance services (e.g. TLS oracles).
Data provenance ensures enhanced data correctness and allows the third-party service to verify
if the presented Portal credential originated from a specific website and complies with an
oracle-specific statement (e.g. ϕ="d[balancepaypal]>5k") [11], [12], [58], [97]. To obtain a data
provenance credential, users interact in a verification challenge defined by the TLS oracle
protocol, where the oracle verifier acts as the credential issuer in the Portal system. After the
user adds the credential as an attestation and the third-party service trusts the oracle verifier,
then data provenance can be provided for private and public claims.

3.2.4. Evaluation

The evaluation uses a MacBook Pro with the Apple M1 Pro chip and 32 GB of Random Access
Memory (RAM). The benchmarks average ten executions of the same experiment.

Implementation

The Portal proof of concept was conducted locally using the Ganache3 test network (v7.8.0) as
the public blockchain. To manage a decentralized external storage network, we rely on the
containerized Kubo4 IPFS implementation. Due to our local deployment with a single IPFS

3https://github.com/trufflesuite/ganache
4https://github.com/ipfs/kubo
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Table 3.1.: Portal Deployment and Transaction Costs. © 2024 IEEE
Tx Type Cost (eth/$) Time (ms) Size (kB)

Creg deploy 4.15e-3/8.65 18 bc:6.5,tx:6.6
Cid deploy 6.5e-3/13.56 10 bc:10.2,tx:10.7
CC1 deploy 4.96e-3/10.29 385 bc:7.4,tx:12.4
set_C1 call Creg 8.4e-5/0.18 11 tx: 0.46
register call Creg 7.4e-5/0.16 51 tx: 0.3
claimpub call Cid 6.4e-05/0.13 3 tx: 0.48
sample call CC1 6.6e-05/0.14 6 tx: 0.1
verify_π call CC1 8.4e-4/1.76 252 tx: 1.20
claimpriv call Cid 3.9e-4/0.82 21 tx: 0.68
setAtt call Cid 4.01e-4/0.84 27 tx: 0.39
setRev call Cid 3.45e-4/0.72 9 tx: 0.36

node, we disabled InterPlanetary Name System (IPNS) to achieve faster resolution delays
when searching for stored data via content hashes. We rely on the solidity compiler solc
v0.8.20 as the PoS block randomness prevrandao is available in all versions above v0.8.18. We
develop a Portal Golang System Development Kit (SDK) to deploy and maintain Portal at
every party and use the official Ethereum repository go-ethereum5 including abigen v1.10.16
to interact with smart contracts. We convert transaction costs into dollars based on the rate
2084.42$ per 1 eth (Nov. 2023) and select the gas price gasprice=28gwei according to the gas
price of the Ethereum network6. We select the Golang gnark (v0.9.1) repository [98] as the ZKP
system and configured (i) the plonk backend with a universal setup to verify ZKPs on-chain,
and (ii) the plonkFRI backend with a transparent setup for the live verification of ZKPs. To
prove and store private claims efficiently, we benchmark the ZKP circuit C1 (cf. Figure 3.3),
which evaluates data items of claimspriv as private input against a MT commitment as the
public input. We use the MiMC hash function [99] to compress the MT data. We open-source
the Portal code with the smart contracts and simulation scenarios in the repository7.

Costs Analysis

Table 3.1 shows the Portal cost analysis, where transaction costs compute as txcost=gasused ·
gasprice. Depending on the transaction type, Table 3.1 measures byte code and transaction
sizes. We explain the execution times in the range of milliseconds with the local deployment
of Portal. By deploying Portal on the Sepolia8 testnet, we measured transaction resolution
times taking around 150ms and transaction calls taking between 1.3s (CC1 deploy) and
9.4s (setNonce+verify_π+claimpriv). We explain higher execution times of the transactions

5https://github.com/ethereum/go-ethereum
6https://etherscan.io/gastracker#chart_gasprice
7https://github.com/anonsubsub/portal
8https://www.alchemy.com/overviews/sepolia-testnet
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that deploy C1 and verify a proof of C1 with the corresponding higher transaction sizes.
Compared to other contracts, which initialize empty maps, the byte code of CC1 stores large
cryptographic parameters which increase the transaction size of CC1 . Except transactions of
the type deployment and the transaction to verify a ZKP on-chain, the cost per transaction
remains below 1$. Thus, as contracts are deployed once, we consider Portal as cost-efficient.

Simulation Scenarios

We present additional microbenchmarks of Portal in the top part of Table 3.2 and show that
Portal supports the storage and resolution of data via the blockchain (row 3) or an external
storage network (row 1). For larger data sizes, such as circuit parameters (row 2), Portal must
rely on IPFS to remain practical and cost-efficient. Lower data sizes can be stored and resolved
efficiently via the blockchain (cf. rows 3-5). The lower part of Table 3.2 presents end-to-end
benchmarks per system role for two simulation scenarios; the (i) on-chain and (ii) live mode
of a private claim. The numbers of the simulation scenarios build upon microbenchmarks
provided in the top part of Table 3.2 and involve transaction benchmarks of the Table 3.1.

For the identity service (IDS), setting up Portal via setupe2e depends on the tuple of trans-
actions (Cre f ,CC1 ,set_C1), the zk.Setup call, and to storage call setIPFSpΠ . Notice that to
instantiate Portal, setupe2e must be called once. Registering a user via registere2e requires
the transactions Cid and register. Setting a private claim via setClaimpriv

e2e depends on calling
the tuple of transactions (setNonce, verify_π, claimpriv), resolving the tuple (nonce=resnonce,
pΠ=getIPFSpΠ ), and calling zk.Prove. Finally, with showClaimpriv

e2e , the user presents a private
claim to the third-party service (TPS) with the tuple (Waddr, nameclaim) in a TLS session that
takes 20ms. The on-chain verification of a private claim concerns the tuples of resolutions
(resWaddr , resclaim) and would depend on (resattest, resrev) when verifying an attestation. The
live verification of a private claim requires the user and TPS to download pΠ and locally call
zk.Prove and zk.Verify with plonkFRI respectively. Before the live verification, the third-party
service discovers available ZKP circuits by resolving resC1 .

The simulation results show that the on-chain verification of private claims trades a one-
time transaction cost at the user for cheap presentation and verification computations. In
contrast, the live verification introduces reoccurring calls of zk.Prove and zk.Verify and a
communication cost in the size of mega bytes. However, when relying entirely on the live
verification, users are less susceptible to tracking. The evaluation of the ZKP circuit C1 using
the plonkFRI backend yields a 3.1s setup, 3.4s prove, and 1ms verification time. Even though
plonkFRI increases execution times, Portal relies on plonkFRI for any ZKP live verification to
leverage the transparent setup benefits which come with plonkFRI.

3.2.5. Discussion

This section compares Portal against related works (cf. Table 3.3) and summarizes how future
work addresses current limitations.

52



3. Sovereign Identity & Data Privacy

Table 3.2.: Portal Microbenchmarks and Simulation Scenarios. © 2024 IEEE
Name Roles Time (ms) Com (B)

set / getIPFSclaim user/TPS-IPFS 73 / 4 pub:136,priv:210
set / getIPFSpΠ IDS-IPFS 631 / 66 7.43 (MB)

resclaim TPS-BC 5 pub:136,priv:210
resWaddr / nonce user/TPS-BC 10 / 6.2 42 / 78

resattest / rev / C1 TPS-BC 4.7/4.5/4.8 120 / 56 / 130
zk.SetupC1

plonk IDS 1029 pC1
Π =7.43 (MB)

zk.ProveC1
plonk user 195 π=552

zk.VerifyC1
plonk TPS 2.5 -

Name Cost ($) Time (ms) Com (B)

setupe2e 19.12 2074 7449.4 (kB)
registere2e 13.72 61 11 (kB)

setClaimpriv
e2e 2.72 546.2 7432.6 (kB)

showClaimpriv
e2e - 20 50

verifyClaimpriv
e2e - 15 252

showClaimlive
e2e - 3507 7430.5 (kB)

verifyClaimlive
e2e - 71.8 7430.1 (kB)

Related Works

The work DecentID [100] introduces a smart contract identity system which resolves user
data via four different contracts. DecentID supports access control of user data via a key
management protocol and discloses user data entirely upon access provision. In Portal, users
can control and provide access privileges by creation and sharing multiple identity contracts. In
contrast to DecentID, Portal supports enhanced data privacy through on-chain and off-chain
ZKP computations.

The work zk-creds [55] proposes the first anonymous zkSNARK credentials with an unlink-
able multi-show presentation, where linkage gadgets obfuscate links between subsequent
proofs of the same credential. With a verifier-chosen nonce, zk-creds prevents credential
replays towards the verifier in the off-chain context. By contrast, Portal works on-chain
and applies the PoS randomness to prove zkSNARK claims in unique and replay-resistant
verification sessions.

The work Zebra [54] introduces a zkSNARK credential scheme with an on-chain ZKP
verification at an access control contract. Before a user authenticates at an application smart
contract with a wallet address Waddr, the user posts a ZKP to the access control contract to
provide access privileges to Waddr. In contrast to Zebra, Portal does not entirely focus on
credentials and introduces the concept of user-accountable claims. With claims, Portal provides
a solution that matches SSO requirements. Further Portal improves the cost-efficiency by
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Table 3.3.: Comparison of Portal with Related Works. © 2024 IEEE
Paper Dec. Resolution On/Off-chain Verify Extra Contract

DecID /
zk-creds /
Zebra /
zkLogin /
Portal /

solving ZKP replay attacks via a cheap transaction sequence, instead of relying on additional
smart contracts.

The work zkLogin [101] modifies the OpenID Connect nonce by computing a public key on
the random nonce value from the third-party IdP (e.g. Google). The resulting value is used
to derive an on-chain address which the user can prove using a ZKP. Proving the generated
addess allows the user to authenticate transactions in the on-chain context. Thus, the user
is able to leverage legacy identity providers and use existing OpenID Connect credentials in
smart contracts. Portal tries to minimize the reliance on third-party entities (e.g. OpenID
Connect providers) and does not focus on the generation of session tokens (e.g. OpenID
Connect nonce values).

Limitations & Future Work

Portal runs on the native blockchain network called Layer 1 (L1). To optimize transaction
costs, we envision deploying Portal via scalable Layer 2 (L2) networks (e.g. zk-rollups [102]).
We expect that our proof-of-concept implementation requires minor adjustments to reach L2
compatibility as existing tooling for L2 deployments exist. With a L2 deployment, Portal must
be compared towards related works with regard to cost and efficiency. Another item of future
work is the security assessment under relaxed assumptions of blockchain properties and the
consideration of censorship implications. Concerning decentralizing the identity service, we
either (i) register users based on a multi-party signature issued by multiple identity services,
or (ii) maintain a list of public keys in the registry contract, such that public keys authorize
identity services. We like to highlight that Portal is compatible with data provenance solutions
if users interact with attesting oracle services [58], [97]. To align Portal with standardization
efforts, we see OpenID Connect, W3C DID and VC as appealing compliance goals.
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3.3. Privacy-preserving Authorization for Sovereign Identity

Sovereign credential management promotes self-determined control of credentials without
relying on external parties who administer data. However, existing solutions of sovereign
credentials (e.g. DIDs and VCs as defined by the W3C) do not enable credential holders
to verify whether a Credential Issuing Authority (CIA) legitimately issued a credential. As
a remedy, we construct a secure authentication protocol, called A-PoA, to provide privacy-
preserving authorization of CIAs. We leverage a cryptographic accumulator to enable Root
Authorities (RAs) with the ability to authorize CIAs for issuing credentials. CIAs can
prove accumulator membership via a non-interactive zero-knowledge proof. This allows
a credential holder or blockchain validator to verify the validity of a CIA, while the CIA
remains anonymous. Our security analysis shows the integrity and confidentiality of our
protocol against malicious adversaries and our experimental evaluation shows constant
verification complexity independent of the number of authenticated CIAs that are registered
in the accumulator. Hence, with A-PoA, we introduce the missing building block to develop
certification chains in sovereign credential architectures that are compatible with the Verifiable
Credential (VC) ecosystem.

Recap & Motivation: The term identity management (IdM) refers to data management
around identification, authorization, and authentication of identifiers in any form. In recent
years, different forms of IdM have emerged. Central IdM system design maintains the identity
of users in a single system and continues to remain vulnerable to the single point of failure
pattern [22]. Federated IdM systems distribute data of identities across trusted platforms
and provide benefits of exchange and linking of identities. However, such systems enforce
trade-offs between transparency, usability, and negatively affect user privacy [24].

More recent solutions target user-centric IdM to keep users or devices in full control of their
identity data, removing the dependence on third parties. Self-Sovereign Identity Management
(SSIM), as a promising approach to user-centric IdM, enforces user controlled attributes to
brings a new notion of independent data administration. In combination with a VC, the SSIM
scheme can protect private information with enhanced trust [28].

In the context of the VC ecosystem (cf. Section 2.1.2), a VC relies on a:

• Credential Schema (CS), which specifies the name, version, and attributes that will
appear in the credential.

• Credential Definition (CD), which references a CS and specifies cryptographic metadata
containing the signatures and data of the CIA.

The cryptographic data in a CD will be used for verifying attributes of an issued credential.
Hence, a CD enables a third party to cryptographically verify the validity of claims made in a
credential by the respective CIA. Therefore, to issue a credential, a CIA must release a CD
beforehand (cf. Figure 3.5).

Challenge: As RAs and CIAs have equal privileges to write to the verifiable registry
(decentralized public infrastructure), the credential holder remains unable to verify whether a
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Verifiable Registry (e.g. Distributed Ledger) 
to maintain identifiers and schemas

Credential
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Figure 3.5.: Presentation of the ecosystem around Verifiable Credentials (VCs), highlighting
the missing relation between the Root Authority (RA) (Schema Creator) and the
Credential Issuing Authority (CIA) (Definition Creator & Credential Issuer). Our
work specifies a protocol for the establishment of a trust relation between RAs
and CIAs. © 2021 IEEE

CIA is authorized to issue a credential. This issue remains an unsolved problem in the VC
standardization by the W3C and set the core motivation for our contribution.

To clarify the problem with a use case in the automotive domain and referring to Figure 3.5,
assume a vehicle Original Equipment Manufacturer OEMi as a RA (CS issuer). The CS,
published by OEMi, would specify attributes of a credential that is autonomously verified
during a software update by On-Board Equipment (OBE). Without an authorization scheme
for CIAs, every Software Provider SPj would be able to register CDs that reference the CS of
OEMi. Thus, every SPj would be able to issue credentials to Software Distribution Services

SDSj
k (acting as credential holders). A vehicle (acting as verifier), manufactured by OEMi,

would autonomously verify certificates of every SDSj
k as valid. Even if the update is malicious

and is connected to a maliciously acting SPj.
Contribution: To solve this issue, we propose an authorization scheme, called Anonymous

Proof of Authorization (A-PoA), which enables RAs (such as OEMi) to authorize CIAs (such
as contracted SPj) to issue credentials based on CSs that have been created by RAs. The main
feature of our protocol is that A-PoA keeps the relation between RAs and CIAs anonymous
to entities that verify privilege authenticity of CIAs. To securely construct this protocol,
our A-PoA protocol makes use of the membership verification feature of the cryptographic
RSA-accumulator, introduced in the work [40]. The accumulator allows to aggregate elements
without revealing individual membership. Additionally, we apply the Non-interactive Zero
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Knowledge Proof of Knowledge of Exponent (NI-ZKPoKE) construction of the work [45]
to hide the accumulator elements in the membership verification phase of our protocol. By
disguising the membership authentication with the NI-ZKPoKE, A-PoA does not reveal any
structure of accumulator elements, hence, keeping anonymity of authenticated CIAs.

The evaluation of our work analyzes the security of our protocol and we benchmark the
performance. Concerning the security of our protocol, integrity holds throughout all phases
of the protocol whereas confidentiality partly applies. The performance evaluation shows
efficient benchmarks for the registration, authentication, and revocation phases. With the
requirement of fast and scalable verification, A-PoA achieves constant verification times which
we assume to happen more frequently compared to registration or revocation operations.

Summed up, the contribution of our work9 is as follows:

• In Section 3.3.2, we construct our protocol that enables RAs (CS creators) to authorize
and revoke CIAs (CD creators) for the issuance of verifiable credentials.

• Our A-PoA protocol efficiently verifies CIA privileges by leveraging dedicated ZKPs (cf.
Section 3.3.2).

• Our security analysis evaluates the protocol integrity, confidentiality of specific accumu-
lator parameters, and the anonymity of authorized CIAs (cf. Section A.2).

• We enable verifiable and anonymous trust hierarchies of issuing parties for sovereign VC
ecosystems.

3.3.1. Extended System Model

The following system model extends the system model defined in Section 3.2.1. This involves
an extension of the treat model, the introduction of additional system roles, and different
system goals.

Notations

We define all necessary notations in the Table 3.4, which introduces roles, accumulator
parameters, and cryptographic parameters.

System Roles

Root Authorities are additional parties which are supposed to create credential schemas (CS).

Credential Issuing Authorities are supposed to create credential definitions and take the role
of issuing users in the Portal system model. Further, we assume that the CIAs issue credentials
according to publicly available CDs.

9Major parts of this Section 3.3 are subject to copyright protection: © 2024 IEEE. Reprinted, with permission,
from [Lauinger, Ernstberger, Regnath, Hamad, Steinhorst, A-PoA: Anonymous Proof of Authorization for
Decentralized Identity Management, IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
May/2021] (cf. Appendix D).
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Table 3.4.: Glossary of Notations: (1) Roles, (2) Accumulator Parameters, and (3) Arithmetic
Modulo Primes & Composites. © 2021 IEEE

Symbol Definition

RAi Witness issuing (i) Authorities (CS creator)
CIAh Witness holder (h) Authorities (CD creator)

Hi Credential Holders
VNi Validator Nodes / Verifiers
CSi Credential Schemas
CDi Credential Definitions

t Discrete time / operation counter
Xt Tails file at time t
X0 Initial tails file at t = 0
xi i-th element of the tails file
wi Witness value associated with i-th element
at Accumulator value at time t

p, q, p′, q′ Large λ-bit prime numbers
Zn n ∈N, Zn = {1, 2, . . . , n} = ring of integers mod n
Z∗n Set of invertible elements in Zn

G? Generic group of unknown order {(Zn)∗/{±1}}
[-B, B] Range of integers such that |G|/B is negligible

QRn Subgroup of quadratic residues of G?,
contains x ∈ Z∗n, if ∃ y ∈ Z∗n, with y2 ≡ x (mod n)

ϕ(n) Number of elements in Z∗n,
if p · q = n then ϕ(n) = (p− 1) · (q− 1)

g, h Generator of a Group G?

Accumulator Managers (Smart Contract) are supposed to publicly manage the crypto-
graphic accumulator and we consider a smart contract at a decentralized public infrasutrcture
as the accumulator manager.

Credential Holders are supposed to request, obtain, and present credentials. Credential
holders take the role of Portal users who manage claims.

Credential Verifiers take the role of third-party services in the Portal system model and verify
incoming credentials of credential holders.

System Goals

Anonymity holds for the identities of CIA parties that are registered in cryptographic ac-
cumulator. This means that no adversary is capable of linking issuing parties during the
verification of credentials.

Integrity holds such that no malicious adversary can obtain a false authorization privilege
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from the RA.

Threat Model

Throughout the security analysis, we assume to have the following models of adversaries:

• A1 (Network Eavesdropper): Suppose a hostile network participant, acting as A1, in-
tends to eavesdrop and modify or decrypt all messages m exchanged throughout the
introduced protocols.

• A2 (Unforgeability): Suppose A2 is a malicious adversary, trying to forge a valid proof of
an invalid identity. A2’s efforts can be based on previously seen witness pairs (x, w)

(only w is known by A2) and accumulator values a.

• A3 (Cheating Verifier): Suppose A3 is a malicious Verifier V that verifies the authentica-
tion proofs of a prover P. Then, A3 does not learn anything else than the validity of the
statement proven by P.

Further, we assume a safe accumulator manager that does not share the tails file over
the network. Additionally, no hostile network participant is able to forge the private keys
associated to DIDs in use. Network communication is secured using authenticated encryption
and sessions keys are random to prevent replay attacks.

3.3.2. A-PoA Protocol Specification

This section describes the A-PoA protocol which solves the missing trust relation between
trusted authorities in the VC ecosystem. Section 3.3.2 provides an overview of A-PoA and
introduces different phases around the accumulator management. The subsequent sections
go into the details of each protocol phase.

Protocol Overview

In A-PoA, we associate an element x with a CIA and the accumulator value at with a specific
CS (cf. Section 2.2.2 for details on the accumulator construction). Since RAs create CSs,
RAs count as accumulator managers. By adding an element x to the accumulator value at

at time t, RA authorizes a CIA to issue a credential based on the specific CS. During the
CIA registration phase, the CIA, as the creator of the element x, receives a witness w. A
witness w can be extracted from at for every element x in at. With that, it is possible to
verify the existence of x in at by using the respective witness wt for x. The element-witness
pair (x, w) enables the CIA to prove membership of x in at, thus, authenticating itself as an
authorized authority to issue a credential based on a specific CS, which has been created by
the accumulator manager RA. The RA maintains a so-called tails file to monitor authenticated
CIAs in form of elements x. The fact that it is possible to remove an element x from the
accumulator at provides RAs with the ability to revoke authenticated CIAs at any point in
time.
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The RSA-accumulator we use has been introduced in Section 2.2.2. Necessary functions to
manage the accumulator can be seen with the first five functions of Figure 3.6. The last two
functions of Figure 3.6 generate and verify the NI-ZKPoKE proof of an element-witness pair
(x, w). All functions apply at different stages throughout A-PoA and will be explained in the
next sections. To enable anonymous access control of CSs in the VC ecosystem, we divide
A-PoA into four main phases:

1. Schema Registration requires a RA to publish a CS as well as an associated accumulator
to the verifiable registry.

2. CIA Registration and Authorization requires the accumulator manager RA to add an
element to the accumulator and return a witness.

3. CIA Authentication requires the CIA (witness holder) to generate an authentication
proof for the CD transaction.

4. Maintenance describes incoming addition and revocation updates of the accumulator
which affects the authorization status of CIAs.

Schema Registration

Before we introduce our approach to authorize CIAs, it is necessary to set up the initial state
of the verifiable registry via a smart contract. Each node maintaining the smart contract may
have a number of pre-defined transactions defining the initial pool of network nodes. It is
assumed that authorities {RA1, RA2, ..., RAi} are initialized at the smart contract with writing
permission. With that, each public entity can be initialized through a special transaction on
the verifiable registry which discloses their public DID. It is assumed that with each initialized
CSi, created by RAi, an accumulator at is generated and registered at an accumulator registry
At on the verifiable registry (cf. GenAcc() in Figure 3.6). Likewise, RAi creates an empty or
initialized tails file X0 at time t = 0. The schema registration protocol can be seen in the first
phase of Figure 3.7 which stops at the first dotted horizontal line.

CIA Registration and Authorization

As the first core part of our work, this section describes the secure generation of an accu-
mulator element xh and its corresponding witness wh. The interacting authorities are the
witness issuer RAi (CSi creator & accumulator manager) and the witness holder CIAh (CDi
creator & credential issuer). Both witness issuer and holder have the privilege to write to the
verifiable registry. We assume that the state of the verifiable registry is initialized as described
above. To achieve collision resistance among accumulator elements, we utilize a hash function
Hprime with prime domain. This hash function iteratively hashes an input and a counter to
generate λ-bit accumulator elements. Increasing the counter finally creates an output of the
hash function that is prime and co-prime to ϕ(n) [45]. Note that this function can be the
target of timing and side-channel attacks. Thus Hprime leverages using dummy computations
to prevent such attacks.
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1. GenAcc(λ, X0):
2. p′ ← Genprime(λ); q′ ← Genprime(λ)

3. p← 2 · p′ + 1; q← 2 · q′ + 1

4. g′acc
R←− G?; n← p · q

5. gacc = (g′acc)
2 mod n; at = g

∏N
i=0;x∈X0

xi
acc mod n

6. return: at
7. GenAccElement(λ):

8. x R←− Z

9. return: Hprime(x, λ)

10.Add(at, Xt, xi):
11. if xi ∈ Xt: return: (Xt, at)
12. else:
13. Xt+1 ← Xt ∪ {xi}
14. at+1 = axi

t mod n
15. return: (Xt+1, at+1)
16.Revoke(at, Xt, xi):
17. if xi ̸∈ Xt: return: (Xt, at)
18. else:

19. at+1 = a
x−1

i mod ϕ(n)
t mod n

20. Xt+1 ← Xt \ {xi}
21. return: (Xt+1, at+1)
22.GenWit(xi, Xt, gacc):

23. wt = g∏(Xt\{xi})
acc mod n

24. return: wt

25.UpdateWit(wt, xi, rev, at, xdeleted
k ):

26. if rev == true:
27. α · xi + β · xdeleted

k = 1; (α,β Bezout)

28. wt+1 = wβ
t · aα

t
29. return: wt+1
30. else:
31. wt+1 = wxi

t mod n
32. return: wt+1
33.GenProof(wx, x, at):

34. k, ρx, ρk
R←− [−B, B]; z = gxhρx

35. Ag = gkhρk ; Awx = wk
x

36. l ← Hprime(wx, at, z, Ag, Awx ); c← H(l)
37. qx ← ⌊(k + c · x)/l⌋;
qρ ← ⌊(ρk + c · ρx)/l⌋
38. rx ← (k + c · x)
mod l; rρ ← (ρk + c · ρx) mod l

39. π ← {l, z, gqx hqρ , wqx
x , rx, rρ}

40. return: π
41.VerifyProof(wx, at, π):
42. {l, z, Qg, Qwx , rx, rρ} ← π; c = H(l)
43. Ag ← Ql

ggrx hrρ z−c; Aw ← Ql
wx wrx

x a−c
t

44. Verify rx, rρ ∈ [l];
l = Hprime(wx, at, z, Ag, Aw)

45. return: {0, 1}

Figure 3.6.: Pseudocode of the RSA-accumulator generation (GenAcc), element generation
(GenAccElement), addition (Add), subtraction (Revoke) [39], and witness functions
(GenWit & UpdateWit) [40] together with the verification based on the NI-ZKPoKE
protocol (GenProof & VerifyProof ) [45]. © 2021 IEEE

The protocol for authorizing a CIAh to issue credentials based on CSi (cf. intermediate
phase in Figure 3.7) is as follows:

• GenAccElement: CIAh chooses an element x′h ∈ Z at random and calculates a λ-bit
xh ← Hprime(x′h, λ) (see Figure 3.6, line 9). CIAh sends xh to RAi.

• Add: RAi adds xh to the local tails file Xt and updates the accumulator (Xt+1, at+1)←
Add(at, Xt, xh). RAi updates the corresponding accumulator value at and writes the
updated accumulator value at+1 to the verifiable registry.

• GenWit: RAi calculates a new witness wh ← GenWit(xh, Xt+1, gacc) and sends wh to
CIAh.

As the element xh will be written into the tails file Xt (granting CIAh access to reference
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Accumulator manager(RAi , public DID) Credential Issuer(CIAh) Verifier(VNi)

Initialize CSi , at ∈ At, Xt

Register CSi , at at Verifiable Registry

(Xt+1,at+1)←Add(at,Xt,xh)
encasym(xh)←−−−−−− xh←GenAccElement(λ)

wh←GenWit(xh,Xt+1,gacc)
encasym(wh)−−−−−−→ Store wh

π←GenProof(wh,xh,at+1)
encasym(wh,π)−−−−−−−→ {0,1}←VerifyProof(wh,at+1,π)

Figure 3.7.: A-PoA protocol of membership authorization and verification. © 2021 IEEE

CSi) which is saved in the wallet of RAi, xh values need to be a pairwise distinct prime values
to ensure collision-resistance as described in the work [43]. The tails file Xt of RAi contains a
mapping of the DID of CIAh to the value aggregated in the accumulator at.

As RAi saves Xt in its own private wallet, witnesses will need to be recomputed every time
a value is added or deleted from the accumulator. This is why accumulator updates introduce
communication overhead as RAi needs to multicast updated witnesses back to each CIAh.
As our focus lies on efficient verification where authorities are assumed to have sufficient
computational power in the network, computational overhead is negligible.

CIA Authentication

As the second core part of this contribution, this section introduces the authentication of CIAh.
A successful authentication results in authorization of CIAh to perform CDi transactions,
enabling credential issuing. The third phase of Figure 3.7 illustrates this phase of our protocol
with the interaction between CIAh and VNi, acting as prover and verifier respectively.

When intending to issue credentials, CIAh creates a CDi transaction with a valid NI-
ZKPoKE proof of knowledge of xh. The function GenProof() of Figure 3.6 shows the proof
construction which has been developed in [45]. Including the NI-ZKPoKE proof which
proves membership of xh in at, a CDi transaction is sent to the verifiable registry. Here, a
validator node VNi verifies if CIAh is entitled to issue credentials referencing a CSi of RAi.
This verification is achieved by verifying the NI-ZKPoKE proof at a smart contract. The
NI-ZKPoKE proof does not disclose the actual value xh and preserves confidentiality of the
parameter xh. Hence, there is no loss of privacy for CIAh. Line 34 of Figure 3.6 indicates how
the Pedersen commitment hides xh. Again, non-interactivity is achieved through leveraging
the Fiat-Shamir heuristic [103] (cf. Appendix C), which models the unpredictability of the
random choices of VNi through the output of a hash-function. Thus, the protocol for proving
membership of xh in at is the following:

• GenProof: CIAh generates the proof π ← GenProof (wh, xh, at), where xh ∈ Xt, and sends
(wh, π) to the verifier VNi.

• VerifyProof: VNi verifies the membership by invoking {0, 1} ← VerifyProof (wh, at, π).
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Once VNi verifies the membership of CIAh, CDi is written to the verifiable registry, effec-
tively enabling CIAh to issue credentials based on a CSi issued by RAi. An important remark
is that the authentication of CIAh should be based on the NI-ZKPoKE proof only. Likewise,
the privilege of a CDi write transaction should rely on a valid NI-ZKPoKE proof. This means
that CIAh must take a random DID for the communication with VNi instead of using the
publicly known and trusted DID.

Maintenance

Updating the witness of an authority has to be done each time a member is added or revoked
from the accumulator tails file Xt. The witnesses can only be updated by RAi. Therefore, the
accumulator manager/RAi sends an update message to all the members that are a part of the
updated accumulator at+1. We distinguish two cases for the witness update protocol:

Addition: UpdateWit(rev=false) updates a witness wt when a member is added to Xt.
Therefore, UpdateWit adds the new element to the witness wt, which itself is an accumulator
value with an element less compared to the actual accumulator at. Addition of elements
{xi+1, xi+2, ..., xj} (members of the accumulator) to the tails file Xt = {x1, x2, ..., xi} requires
execution of Xt+1 = Xt ∪ {xi+1, xi+2, ..., xj}. This can be seen in line 13 of Figure 3.6. With Xt,

the witness owner can calculate each witness by calculating wt = g∏(Xt+1\{xi})
acc individually.

After the updates, each CIAh receives their updated witness value.
Revocation: With the accumulator scheme, authority RAi is able to revoke the trust from

CIAh by invoking (Xt+1, at+1) ← Revoke(at, Xt, xh). This removes the element xh associated
to CIAh from the tails file Xt. Next, a new accumulator value is computed and written
to the verifiable registry, effectively revoking the ability for CIAh to prove its accumulator
membership to the verifier VNi (smart contract) or the credential holder. Additionally, CIAh
looses its ability to further issue credentials. Note that all credentials, which have already
been issued during the time where CIAh was authorized, are only invalidated if the credential
contains the proof that allows credential holders to verify the validity (CS authorization) of
RAi.

Efficiently updating the membership witness upon deletion of xdeleted
k can be achieved

by calling UpdateWit(rev=true). This function call removes xdeleted
k from the accumulator

by calculating the Bezout coefficients between xi and xdeleted
k as described in [104]. The

Bezout coefficients always exist since the domain Z∗N of the RSA-accumulator contains
odd prime integers only. Thus, the updated membership witness wt+1 can be computed
such that the Bezout coefficients α and β solve the linear equation α · xi + β · xdeleted

k = 1
for gcd(xi, xdeleted

k ) = 1. Lines 27 and 28 of Figure 3.6 show the calculation of the Bezout
coefficients and the witness update. A complete description and correctness proof of the
preceding relation is provided in [104].

3.3.3. Evaluation

This evaluation considers three aspects of our A-PoA construction: (1) aggregated protocol
times, (2) scalability, and (3) privacy. After introducing hardware specifications and selected
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bit-sizes, we evaluate the protocol performance and scalability.

Table 3.5.: Mean execution times (ms) of A-PoA with a 2048-Bit RSA- accumulator (λ = 128),
k=50 elements, and 128-Bit hashes. © 2021 IEEE

Protocol Function Time (ms) COM Big O

Authorization
Prime Gen. 309.81 k O(n)

Acc. Gen. 88.80 1 O(1)
Wit. Gen. 4383.60 k O(n)

Authentication
GenProof 40.06 1 O(1)

VerifyProof 23.42 0

Revocation Acc. Revoke 2244.85 (0-k) O(n)
∑Authorization N/A 4782.21 2k + 1 O(n)
∑Authentication N/A 63.48 1 O(1)
∑Revocation N/A 2244.85 (0-(k-1)) O(n)

Timing Behavior of the RSA-Accumulator and Protocols

The performance evaluation has been conducted using a Lenovo Thinkpad T480s with 16 GB
of RAM and a 1.90 GHz Intel(R) Core(TM) i7-8650U CPU and we used Python to implement
A-PoA. All values collected during the evaluation of the accumulator data structure and
protocols faced 100 repetitions and subsequent averaging to reduce deviations of the results.

Concerning the selection of parameters, this contribution takes accumulators with an RSA
modulus n with 1024-Bit and 2048-Bit sizes, requiring λ = 80-Bit and λ = 128-Bit primes
respectively. The sizes of the parameters of the modulus n and primes do not only affect the
accumulator functions, but the NI-ZKPoKE protocol and its proof size, calculating as πsize =

3 · nsize−bit + 3 ·Hashsize−bit. This means that taking the generic group of unknown order
G? = Z∗n \ {±1} with a 2048-Bit modulus n and a 128-Bit hash-function (Hprime, H), the NI-
ZKPoKE proof size πsize calculates to 861 Bytes for the 2048-Bit RSA-accumulator. The formula
of πsize derives from the Zero-Knowledge (ZK) proof with parameters {l, z, Qg, Qwx , rx, rρ},
where z, Qg, and Qwx depend on the modulo n calculation (2048-Bit n), l depends on the
output size of Hprime which causes rx and rρ (remainders) to remain below l. Switching the
modulo size of the RSA-accumulator and the hash output size affects πsize accordingly.

Protocol Times - Table 3.5 shows execution times of functions of the authorization, authenti-
cation, and revocation protocols for managing access to a CS. Additionally, the last column
provides the communication overhead presented by each function. The evaluation of protocol
times is based on an accumulator with k = 50 elements xi. This decision enables comparison
to the mean computation times of the protocols (revocation, verification) introduced by the
work [105] which we further discuss in the upcoming related works paragraph. Concerning
the communication overhead, if 50 CIAs participate in the protocol requires 50 messages of
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Figure 3.8.: GenProof (left, lightgray) and VerifyProof (right, gray) execution times (ms) of
the NI-ZKPoKE protocol with 128-Bit polynomial time Hprime hash function and
the RSA-accumulator (2048-Bit). © 2021 IEEE

each CIAh to the accumulator manager RAi, 1 message of RAi to the verifiable registry, and
again, 50 messages to communicate each witness wh back to every CIAh. The communication
complexity of the revocation protocol depends on the application and the decision whether to
notify CIAs. Due to the non-interactivity feature of the NI-ZKPoKE protocol, the authenticity
verification is efficient with a single message.

Proof Verification - An evaluation of different numbers of elements aggregated in the
accumulator with respect to the corresponding verification and proof creation time can
be found in Figure 3.8. On average and without considering Hprime (volatility caused by
non-deterministic behavior), the proof verification is 42% faster than the proof creation for
the 2048-Bit RSA modulus n with a hash size of 128-Bit and a security value λ = 128. We
assume that the accumulator value has already been fetched from the verifiable registry and
the verification is restricted to evaluating the VerifyProof() algorithm introduced in Figure 3.6.
The values depicted in Figure 3.8 are averaged over 100 executions. Notably, the verification
speed is constant (O(1)) for constant system parameters and does not depend on the number
of elements aggregated in the accumulator. The times of executing Hprime vary and the
optimization of this function goes beyond the scope of this work.

Witness Update - In our construction, the accumulator manager RA authorizes CIAs to
access CSs through broadcasting witness updates back to authorized CIAs. The efficiency
of the witness update operation depends on the number of elements that are added to or
deleted from the accumulator at a given point in time. Addition of 10 elements to the witness
of an authorized entity takes around 20 ms with a 2048-Bit RSA modulus n and around 3.5 ms
by using a 1024-Bit RSA modulus n (cf. Figure 3.9). Addition and deletion of CIAs does not
occur very often as CIAs itself maintain their issued certificates at least the expiry time (90
days validity of Let’s Encrypt certificates) [106]. Nevertheless, the communication overhead
in A-PoA is a bottleneck that could be solved by having CIAs update their witnesses on their
own or by having them rely on third parties. With our anonymity requirement, outsourcing of
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protocol computations is not possible and the bottleneck remains. However, leveraging more
complex accumulators such as the Braavos accumulator of the work in [39] do not require
updates upon addition of elements (but has weaker security guarantees) and we consider the
usage of such accumulators as future work.

Discussion

Privacy: Resulting from specifications of A-PoA, no entity except of the accumulator man-
ager/RA and the authenticated CIA can reveal or track information of the CIA witness
pair (x, w). The reason for this is the confidential communication between the RA and CIA
authorities as well as the accumulator data structure itself. The aggregated elements in the
RSA-accumulator are secure under the discrete logarithm problem and, by respecting the
strong RSA assumption, face negligible collision chances. When proving membership of
a CIA to an accumulator, the NI-ZKPoKE proof hides the accumulator element without
revealing any structure of it. It is important to notice that the CIA must constantly switch
its DIDs, even when communicating to the same entity periodically to prevent information
tracking. This way, the authorized/privileged CIA remains anonymous.

Related Work: The work of Hölzl et al. [107] leverages a so-called disposable dynamic
accumulator in the context of a pseudonym-based signature scheme where pseudonyms are
represented by tokens. The accumulator data structure of their work proves the validity
of these tokens which make up the accumulator elements. In a similar way to our validity
management of authorities per CS, the Electronic Identity (eID) issuer in [107] creates a single
accumulator per secure element which handles credential storage. One-time verification to-
kens as pseudonyms and accumulator elements establish the privacy-preserving functionality,
whereas in our work, accumulator computations and ZK-proofs provide anonymity.

The evaluation of the work of Hölzl et al. considers generation, binding, verification, and
update times of a RSA-accumulator in the context of mobile eID management. Similar to
their work, our authorization and revocation methods increase/decrease linearly depending

66



3. Sovereign Identity & Data Privacy

on the number of elements in use. Figure 3.9 shows this behavior for a changing number
of elements xi. By contrast, our execution times of the NI-ZKPoKE proof generation and
verification remain constant (see Figure 3.8). Our NI-ZKPoKE verification times are up to
25% faster compared to the verification times in the work [107].

In [108], Reyzin et al. utilize asynchronous accumulators with backwards compatibility to
build a distributed PKI. In their work, the accumulator is used to reference and store public
keys of users. The witness value and the public key allow validity checking of security key
pairs. However, compared to our work and with regard to a PKI, our concept is able to
leverage hierarchies and anonymity proofs to manage user credentials with absolute privacy
and user-centric control of credentials.
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In this chapter, we investigate the limits of privacy-enhancing technologies (PETs) in the
context of verifying the provenance of data. Data provenance protocols are an important
building block to build data sovereign systems and allow devices to reclaim control and
authority over data which resides at external online services. In our online world of today,
most digital data lies at online services, due to the fact that the Internet has used external
identity services to manage data. Moving the control and ownership of online data back to
the devices is not as easy as it seams. If data on the Internet could be witnessed transparently,
then assessing the provenance of digital data is easy and does not require specific solutions.
However, most countries enforce the use of secure communication protocols for the exchange
of online data. And, secure communication channels prevent external parties from witnessing
exchanged data. Thus, if a device requests data from a centralized data hub and presents
that data to another third party, then the third party cannot verify the origin of the data. As a
solution to this problem, data provenance protocols enable devices to present protected data
to third parties such that the third party is able to verify the provenance of the data. As such,
devices regain the power export digital assets and reputation to any new service of choice.

Our contributions [58], [97] solve important limitations of current data provenance protocols.
Before we outline our contributions, Section 4.1 systematizes the state of the art of existing data
provenance solutions. The initial analysis clarifies our direction of research and motivates why
we focus on improving software-based data provenance protocols. Next, our first contribution
of this chapter (cf. Section 4.2) analyzes main efficiency bottlenecks which affect online
execution times of data provenance protocols. Based on our insights, we propose two new
building blocks which (i) enhance the computation times of ZKPs at end devices and (ii)
reduce the overheads introduced by secure two-party computation techniques during the
record phase. Our first contribution facilitates the deployment of secure data provenance
protocols in constrained environments. Our second contribution of this chapter (cf. Section 4.3)
targets the reduction of bandwidth requirements and enables an Internet scale roll out of
data provenance validators. Our second contribution reconsiders the security assumption
made by existing data provenance approaches. By relying on a weaker network adversary, we
propose a protocol which does not depend on any multi-party computation (MPC) techniques.
Instead, we show that an extended ZKP circuit counteracts emerging security risks which
occur in a data provenance setting without MPC. As a third contribution [109] (cf. Section 4.4),
we develop a policy-driven generation of secure computation circuits (ZKP circuits and MPC
circuits), which automates a dynamically configured, policy-compliant verification of data
provenance.
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Figure 4.1.: High-level overview of data provenance solutions. The illustration of TLS sessions
in today’s web is depicted in the top left corner. TLS sessions, per default, are
secure channels between two parties and prevent a third-party from verifying
the provenance of TLS data. Data provenance protocols solve this issue and
certify TLS data such that TLS data becomes publicly verifiable. TLS data is either
attested on the server side (cf. bottom left corner) or by an additional external
party (cf. right side).

4.1. Systematization of TLS Oracles

In this section, we give a brief systematization of existing approaches for verifying the
provenance of data. In the scope of this thesis, we focus on the provenance of TLS data
because TLS is the most used secure communication channel on the Internet. Notice that
our contributions equally apply to other secure channel protocols (e.g. Secure Shell (SSH)
protocol). Data provenance protocols which operate on TLS as a secure channel are referred
to as TLS oracles. In the following, we interchangeably use the names TLS oracles or data
provenance protocols and refer to the same thing.

As initially pointed out (cf. TLS in Section 2.2.3), TLS establishes a confidential and
authenticated communication channel between two parties. As a consequence, without the
opportunity to witness exchanged data in the secure channel, no extra third party is able verify
whether presented data originated from the secure channel (cf. top left corner in Figure 4.1).
Third parties are only able to verify the provenance of TLS data if a trustworthy party attests
to the correctness of shared TLS data. Naturally, to prevent self-signed attestations on claims,
the attesting party cannot collude with the party presenting the TLS data. As a result, two
options remain for the attestation of TLS data. Either the server attest to data that has been
exchanged during the TLS session (cf. bottom left context of Figure 4.1), or another extra
party takes over the validation of TLS data integrity according to a valid TLS session (cf. right
side of Figure 4.1). If the extra party challenges the client using a ZKP system, then data
privacy can be maximized such that the oracle verifier learns nothing beyond a statement
validity on the TLS data. In the following, we discuss security, sovereignty, and usability
properties that exist in different settings for verifying data provenance.
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Figure 4.2.: Systematization of TLS oracles with regard to different deployment settings,
security assumptions, and usability properties.

4.1.1. System Settings, Assumptions, Properties

The features of TLS oracles depend on the number of involved parties, the access to security
assumptions, and the deployment options. The next paragraphs iterate over all existing
configurations and highlight consequential effects.

Two-party Setting (Server-side Attestation)

In the two-party setting, the TLS server attests to the contents exchanged during the TLS
session [50], [110]. This approach is highly efficient because the signature generation on the
TLS contents is highly efficient. A major disadvantage of the server-side attestation is that
the attestation mechanism imposes software changes at the server. Rolling out individual
software changes at TLS endpoints costs resources and can lead to misconfigurations and
resulting vulnerabilities. Concerning data sovereignty for TLS clients, the two-party setting is
weak as the system provides the server with the control over deciding which data to attest.
And, in many cases (e.g. attesting to digital art or to external values), web endpoints manage
device data where the correctness cannot be verified. For data that is managed and verified
entirely at the server (e.g. payment history and transactions), servers can attest to data states.
The powers of data attestation shifts in the three-party setting of TLS oracles which we discuss
next.

Three-party Setting (External Verifier)

In the three-party setting, the attestation of TLS data is handled by an additional external
party, called the oracle verifier. Here, the verifier challenges the client with a TLS data
presentation which eliminates potential security attacks that are performed by the client.
From the data sovereignty perspective, this challenge is important as it empowers devices to
decide the scope of data attestation. Further, the three-party setting counts as legacy compatible
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as it does not introduce server-side changes. Instead, attestations performed by an external
oracle verifier operate with the functionalities provided by TLS.

Three-party TLS oracles can be constructed using trusted hardware enclaves [111], which
provide secure computation with input privacy. Even through trusted hardware computing is
highly efficient, multiple attacks on trusted hardware environments exist [112], labelling the
trusted hardware security assumption as problematic. Hence, it is of interest to remove the
additional security assumption of trusted hardware and, instead, rely on security assumptions
achieved by software implementing cryptography. As such, software-based TLS oracles [12]
do not require additional security assumptions beyond hardness guarantees of software
security (cf. Section 2.2.1). Unfortunately, building efficient software-based TLS oracles
remains difficult as today’s PET building blocks drastically increase network overheads and
slow down execution times.

Deployment Options

With respect to the deployment mode in the three-party setting, the verifier can either act as
an external third-party behind the client (notary mode), or appear in between the client and the
server as a proxy (proxy mode). If the oracle verifier takes the role of a proxy, then servers can
detect and consecutively block proxies that are used to withdraw credible data. On the other
hand, the proxy mode facilitates the deployment of oracle verifiers because browser allow the
configuration of proxies.

Blocking the functionality of TLS oracles is not possible if the oracle verifier runs as a
notary service behind the client. In this case, clients are the point of contact for the message
exchange with the server. It holds that every client has a unique IP address such that servers
would be required to block all incoming traffic. But, in the notary mode, servers can enforce
Cross-Origin Resource Sharing (CORS) policies to prevent the communication to external
services in the same session.

4.1.2. Insights & Challenges

All three-party TLS oracles commonly rely on secure computation building blocks (PETs
in form of ZKP and MPC systems) [11], [12]. The MPC building blocks are used to set up
a secret-shared, client-side TLS session between the oracle verifier and the client (cf. grey
and red boxes in Figure 4.3). Subsequently, the client can only proceed according to the
TLS specification if the client interacts with the verifier using secure 2PC (cf. blue boxes in
Figure 4.3). The 2PC setting gives the verifier the guarantee that the client preserves integrity
according to the TLS specification. Further, the client cannot mount MITM attacks as the
client only maintains a single secret share of TLS session parameters. MITM attacks are a
concern in TLS oracles. With the option to successfully mount MITM attacks, clients know
all secret TLS session parameters and remain unnoticed when breaking TLS data integrity.
Breaking TLS integrity means that clients can obtain untrue attestations on arbitrary TLS data.
Before the external verifier attests TLS data, the verifier imposes a ZKP challenge on the client
(cf. yellow boxes in Figure 4.3). In this challenge, clients must convince external verifiers of
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Figure 4.3.: Overview of secure computation building blocks in TLS oracles.

true statements that hold on TLS data via data proofs. Further, clients are challenged to prove
the integrity of TLS data according to a valid TLS session via parameter matches through
authenticated encryption algorithms.

In order to improve existing approaches, we pursue two directions which either optimize
or remove secure computation building blocks. Leading to our first insight, the example of
removing the reliance of PET building blocks exist in the work [12], which proposes an TLS
oracle in the proxy mode. One main characteristic of this proxy mode is that is removes the
reliance on costly maliciously secure computation techniques in the TLS recod phase (cf. Deco-
Proxy vs. Deco in Figure 4.3). This optimization comes at the cost of relying on an additional
security assumption which prevents malicious clients from mounting MITM attacks. Thus,
as our first insight, we focus on the investigation of TLS oracles under different security
assumptions in order to remove costly secure computation techniques. Our contribution,
called Origo (cf. Figure 4.3), leverages an additional security assumption to entirely remove
costly 2PC overheads.

As our second insight, we notice that, in the three-party session, the distribution of secret
shares changes during the protocol execution. We take this insight as a starting point to
investigate the challenge of enhancing the efficiency of PET building blocks. Our contribution,
called Janus (cf. Figure 4.3), achieves two efficiency gains by tailoring PET building blocks to
the oracle-specific parameter distribution.
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4.2. Janus: Fast Privacy-preserving Data Provenance for TLS

Web users can gather data from secure endpoints and demonstrate the provenance of sensitive
data to any third party by using privacy-preserving TLS oracles. In practice, privacy-
preserving TLS oracles remain limited and cannot verify larger, sensitive data sets. With this
contribution1, we introduce new optimizations for TLS oracles, which enhance the efficiency
of selectively verifying the provenance of confidential web data. The novelty of our work is a
construction which secures an honest verifier zero-knowledge proof system in the asymmetric
privacy setting while retaining security against malicious adversaries. Concerning TLS 1.3
in the one round-trip time (1-RTT) mode, we propose a new, optimized garble-then-prove
paradigm in a security setting with malicious adversaries. Our garble-then-prove paradigm
uses semi-honest secure computations for the majority of computations in the garble phase.
Our performance improvements reach new efficiency scales in verifying the provenance of
private TLS data and facilitate a practical deployment of privacy-preserving TLS oracles in
web browsers.

Motivation: In the current age of the Internet where generative Artificial intelligence (AI)
boosts the spread of misinformation as never before, industry leading companies combat
misinformation with new data provenance initiatives to maintain a responsible and verifiable
data economy [113], [114]. The goal of the initiatives is the establishment and integration of
data provenance solutions into today’s web, which lacks support of verifiable data provenance.
For instance, secure channel protocols such as TLS provide confidential and authenticated
communication sessions between two parties: a client and a server. However, if clients present
data of a TLS session to any third party (e.g. website), then the third party cannot verify if
the presented data originated from an authentic and correct TLS session (cf. top left part of
Figure 4.1). Thus, the third party cannot verify the provenance of the TLS data. In the eyes of
the third party, TLS data counts as authentic if the origin of the data can be verified. Further,
TLS data counts as correct if the third-party is able to verify the integrity of presented TLS
data against a valid TLS session.

To save a third party from individually verifying data provenance, current approaches
either require servers to attest to TLS data via digital signatures [50], [110], or employ TLS
oracles [11], [12]. Data attestation through servers is an efficient data provenance solution but
requires server-side software changes and access to a certification infrastructure. By contrast,
TLS oracles relieve servers from maintaining a data provenance infrastructure by taking over
the provisioning and verification of data provenance. Due to the seamless integration into the
web, TLS oracles count as legacy-compatible as they do not introduce any server-side changes.
TLS oracles depend on a verifier to examine the provenance of TLS data (cf. oracle verifier
in the right part of Figure 4.1). To validate the provenance of TLS data, the verifier captures
the transcript of a TLS session and challenges the TLS client with a proof computation. If a
TLS client can prove authenticity and correctness of secret TLS session parameters against the

1Major parts of this Section 4.2 are subject to copyright protection: Creative Commons Attribution 4.0 Interna-
tional, with permission from [Lauinger, Ernstberger, Finkenzeller, Steinhorst, Janus: Fast privacy-preserving
data provenance for TLS, The 25th Privacy Enhancing Technologies Symposium (PETS25), July/2025] (cf.
Appendix D).
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captured TLS transcript at the verifier, then the verifier certifies the TLS data of the client. With
the certificate, TLS clients are able to convince any third party of data provenance if the third
party trusts the verifier.

TLS oracles have originated in the context of blockchain ecosystems, where TLS oracles
originally solved the “oracle problem” of importing trustworthy data feeds to isolated smart
contracts [11], [12], [111]. However, TLS oracles are generally applicable to the Internet,
which makes them a crucial technique to build user-centric and data-sovereign systems [84].
For instance, through TLS oracles, users are able to present solvency checks without giving
up control and privacy of their data [115]. The accountability and credibility guarantees
of data provenance systems are used to combat price discrimination [12], bootstrap legacy
credentials [94], or attest if a digital resource originated from a generative AI website [116].

Challenge: Even though different solutions exist, TLS oracles remain constrained in the
amount of sensitive data they can validate. This means that for larger sensitive resources such
as confidential documents, images, or data sets, data provenance solutions are impractical.
For instance, clients are required to prove non-algebraic encryption algorithms (e.g. AES128)
in zkSNARK proof systems [12]. However, current zkSNARK proof systems operate efficiently
if the computed algorithm relies on algebraic structures (e.g. MiMC [99]). Another approach
leverages the structure of TLS 1.3 stream ciphers and separates non-algebraic algorithms from
the computations performed by the zkSNARK proof system [11]. In this case, the client is
required to know the structure of TLS data in advance and cannot selectively verify dedicated
parts of TLS records. Even if the computation of non-algebraic algorithms is shifted into
a pre-computation phase [57], End-to-end (E2E) efficiency of private provenance solutions
remains expensive.

Contribution: Our work addresses the above mentioned limitations with two new contribu-
tions. We leverage the fact that, in the challenge phase (cf. stage 2 in right part of Figure 4.1),
TLS oracles introduce an asymmetric privacy setting between collaboratively acting parties;
the TLS client and the verifier. We leverage the asymmetric privacy setting to construct a
HVZK proof system with security against malicious adversaries. Our construction relies on a
new validation phase which is unilaterally performed by the client. The benefit of the HVZK
proof system [70] is that it efficiently evaluates non-algebraic algorithms and improves prove
computation benchmarks in the challenge phase. Our approach does not require a trusted
setup security assumption. With that, our work achieves new E2E benchmarks and solves a
main bottleneck of current TLS oracles; the efficient evaluation of legacy algorithms without
compromising on security guarantees. Our first contribution applies to TLS oracles running
TLS 1.2 or 1.3.

Our second contribution applies to TLS 1.3 in the 1-RTT mode. Here, we require the client to
select a cipher suite which is supported by the server. In a non-optimistic scenario, the client is
supposed to perform one pre-fetch call. If the client sends a compliant CH message during the
TLS 1.3 handshake, then the server instantly responds with the entire server-side handshake
transcript. We leverage this effect and show that the verifier can securely authenticate the
SHTS in a malicious security setting. With access to an authentic SHTS at the verifier, we
run the garble-then-prove paradigm [117] and rely on a semi-honest 2PC system which does
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not depend on authenticated garbling. We detect malicious activities of a client by matching
transcript commitments against authenticity guarantees derived from SHTS. We achieve
performance advantages by utilising more lightweight, semi-honest 2PC for the majority of
TLS 1.3 computations.

Result: Our E2E benchmarks for TLS 1.3 verify 8 kB of public TLS data in 0.58 seconds and
verify 8 kB of sensitive TLS data 6.7 seconds. Running TLS 1.2, we verify 8 kB of sensitive
TLS data 6.2 seconds. Concerning proof computations in the client challenge, our work
outperforms related approaches by a factor of 8x (cf. Section 4.2.4) and relies on a security
setting which does not require a trusted setup assumption. In analogy to Roman mythology,
we name these contributions for TLS oracles after the god of transitions, Janus. With that, the
Janus optimizations guard an efficient transition of web resources into a representation where
provenance can be verified. In summary,

• We formalize the asymmetric privacy setting of TLS 1.2 and TLS 1.3 oracles. We show
that in the asymmetric privacy setting, maliciously secure proof systems can be replaced
with a construction that combines a HVZK proof system with a new unilateral validation
phase.

• We optimize the efficiency of TLS 1.3 oracles by considering SHTS authenticity guaran-
tees during the garble-then-prove paradigm while retaining security properties equiva-
lent to previous works.

• We analyse the security of our constructions (cf. Appendix A.3), provide performance
benchmarks (cf. Section 4.2.4), and open-source2 the implementation of our secure
computation building blocks.

4.2.1. System Model

The system model defines system roles, the threat model, and system goals in form of security
properties.

General Notations

The TLS notations of this work are introduced in Section 2.2.3, and closely follow the
notations of the work [118]. Further, we denote vectors as bold characters x = [x1, . . . , xn],
where len(x) = n returns the length of the vector. Base points of elliptic curves are represented
by G ∈ EC(Fp), where the finite field F is of a prime size p. For elliptic curve elements,
the operators ·,+ refer to the scalar multiplication and addition of elliptic curve points
P ∈ EC(Fp). The symbol λ indicates the security parameter. For bits or bit strings, the
operators · represents the logical AND, and ⊕ represents the logical XOR. Other operators

describe a random assignment of a variable with $←, the concatenation of strings with ||, and

the comparison of variables with ?
=. Concerning AEAD algorithms in the GCM mode, the

2https://github.com/jplaui/janus_artifacts/
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symbol MH is a Galois field (GF) multiplication which translates bit strings into GF(2128)
polynomials, multiplies the polynomials modulo the field size, and translates the polynomial
back to the bit string representation.

System Roles & Adversarial Behavior

Clients establish a TLS session with servers, query data from servers, and present TLS data
proofs to the verifiers. We assume that clients behave maliciously and arbitrarily deviate from
the protocol specification in order to learn secret shares of TLS session parameters from the
verifier. Further, malicious clients try to learn any information that contributes to convincing
the verifier of false statements on presented TLS data.

Servers participate in TLS sessions with clients and return record data upon the reception of
compliant API queries. We assume honest servers which follow the protocol specification.

Verifiers act as proxies and take over the role of TLS oracle verifier. Verifiers are configured at
the client and route TLS traffic between the client and the server. We assume malicious verifiers
deviating from the protocol specification with the goal to learn TLS session secret shares or
private session data of clients.

Threat Model

We rely on a threat model with secure TLS communication channels between clients and
servers (TLS security guarantees hold). Further, we assume that fresh randomness is used per
TLS session. Network traffic, even if it is intercepted via a MITM attack by the adversary (e.g.
the client), cannot be blocked indefinitely. We assume up-to-date DNS records at the verifier
such that the verifier can resolve and connect to correct IP addresses of servers. The IP address
of a server cannot be compromised by the adversary such that adversaries cannot request
malicious PKI certificates for a valid DNS mapping between a domain and a server IP address.
Servers share valid PKI certificates for the authenticity verification in the TLS handshake
phase. Server impersonation attacks are infeasible because secret keys, which correspond to
exchanged PKI certificates, are never leaked to adversaries. Our protocol imposes multiple
verification checks on the client and the verifier, where failing verification leads to protocol
aborts at the respective parties. All system roles are computationally bounded and learn
message sizes of TLS transcript data. For employed ZKP systems, we expect completeness,
soundness, and HVZK to hold. We assume that the client and verifier do not collude.

System Goals

The following security properties concern the client and verifier as the server is assumed to
behave honestly.

Session-authenticity guarantees that verifiers attests web traffic which originates from an
authentic TLS session. Authenticity is guaranteed if the verifier successfully verifies the PKI
certificate of the server.
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Session-integrity guarantees that a malicious client and verifier cannot deviate from the TLS
specification if a TLS session has been authenticated. This means that an adversary cannot
modify server-side or client-side TLS traffic in any TLS phase. Notice that for client-side TLS
traffic of the record phase, a malicious client is able to send arbitrary queries to the server,
such that servers decide if queries conform with API handlers.

Session-confidentiality guarantees that the verifier neither learns any entire TLS session
secrets nor any record data which has been exchanged between the client and the server.
Further, the notion guarantees that the verifier learns nothing beyond the fact that a statement
on TLS record data is true or false.

MITM-resistance guarantees that the properties of session-integrity, session-authenticity, and
session-confidentiality hold in a system setting, where adversaries are capable of mounting
MITM attacks.

4.2.2. Optimizing Proof Computations In The Asymmetric Privacy Setting

In the following next subsections, we analyze TLS oracles with regard to (i) performance
tradeoffs and (ii) the asymmetric privacy setting. Further, we secure a HVZK proof system in
the asymmetric privacy setting against malicious adversaries. Our construction relies on a
new secure validation phase which is unilaterally performed by the client (cf. Section A.3.1).

Analyzing Oracles & Asymmetric Privacy

In this section, we analyze the performance bottlenecks of TLS oracles and identify conditions
of asymmetric privacy.

Three-party Handshake: TLS oracles turn the two-party protocol of TLS into a three-party
protocol by introducing a verifier [11]. The verifier ensures that the TLS data of the client
preserves integrity according to an authenticated TLS session via a verifiable computation
trace. To audit the integrity of TLS data, the verifier and client establish a mutually vetting
but collaborative TLS client. To construct a collaborative TLS client, TLS oracles replace the
TLS handshake with a 3PHS [11], [12]. In the 3PHS, every party injects secret randomness
such that the DHE secret on the client-side depends on two secrets. As such, the DHE value,
which is individually derived at the server, can be jointly reconstructed if the client and verifier
add shared secrets together. Appendix 2.2.3 presents the cryptography of the 3PHS.

The consequence of the 3PHS is that the client depends on the computational interaction
with the verifier to proceed in a TLS session with the server. The client preserves computational
integrity according to the TLS specification if the joint TLS computations with the verifier
progress. Without access to the secret share of the verifier, clients cannot derive and use
full TLS secrets and encryption keys that are required for the secure session with the server.
Introducing false session parameters on the client side leads to a TLS session abort at the
server.
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Figure 4.4.: High-level protocol of TLS oracles. After the key derivation computation (KDC),
it holds that kX = kvX + kcX, where X indicates server or client side AE keys.
Algorithms executed by two parties are surrounded by red boxes and achieve
security against malicious adversaries. The syntax ‘?encryption_mode:’ on arrows
applies the arrow if the TLS oracle configured the questioned encryption mode.

Client-side Two-party Computation: With secret shared TLS parameters, the client and
verifier proceed according to the TLS specification by using secure 2PC techniques [12], [119].
To achieve efficient secure 2PC [11], [12], TLS oracles convert secret-shared DHE values in
form of EC coordinates into bit-wise additive secret shares with the ECTF algorithm (cf.
Section 2.2.3) [47]. Additive secret shares can be efficiently added together in 2PC circuits that
are based on boolean GCs [12], [76], [79], [80], [120]. After the ECTF conversion (cf. Figure 4.4),
the client and verifier perform the TLS key derivation and record phase computations using
maliciously secure 2PC based on boolean GCs, which comes with optimized binary circuits
for the required computations (e.g. AES) [71], [121]. The general-purpose 2PC computations
in TLS are determined by the cipher suite configuration of TLS. Further, existing cipher suite
configurations of TLS can be classified according to the encryption mode which is used by
the cipher suite algorithms. We enumerate 2PC computations of TLS oracles according to
encryption modes as the type of encryption mode impacts the 2PC circuit complexity.

1. Mac-then-Encrypt (e.g. CBC-HMAC): The efficiency of TLS oracles in the record phase
heavily depends on the cipher suite configuration. If TLS uses Mac-then-Encrypt (MtE)
AE (TLS 1.2 with Cipher Block Chaining Hash-based Message Authentication Code
(CBC-HMAC)), then the client and verifier end up deriving four secret-shared keys in
the handshake phase:

• kCATS=kvCATS+kcCATS to encrypt request data ptreq.
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• kSATS=kvSATS+kcSATS to encrypt response data ptresp.

• kt
CATS=kvt

CATS+kct
CATS to authenticate requests treq.

• kt
SATS=kvt

SATS+kct
SATS to authenticate responses tresp.

The verifier can disclose the encryption keys kvSATS, kvCATS to the client. However, key
shares to compute authentication tags must be kept private in order to control the
integrity of joint TLS computations [12]. Partly disclosing key shares improves the
efficiency of 2PC computations in the record phase. Because, clients can encrypt or
decrypt records locally without costly 2PC calls. Concerning the computation of MtE
authentication tags, the 2PC complexity remains independent of record sizes (e.g. using
a 2PC-optimized evaluation of HMAC) [12].

Another benefit of CBC-HMAC is that it counts as key committing [12], [56], which
guarantees the existence of an unambiguous mapping between a TLS session key
and record data. As a consequence, capturing ct is the only requirement for the
verifier before secret shares can be disclosed to the client. TLS oracles use the key
committing property and simplify the ZKP computation during the client challenge
to (i) three invocations of AES and (ii) a selective data opening which leverages the
Merkle–Damgård construction [12], [97].

2. AEAD (e.g GCM / CHACHA20_POLY1305): If TLS is configured to protect records
with AEAD algorithms (TLS 1.3 and optionally TLS 1.2), then the client and verifier
derive two secret-shared keys (kCATS=kvCATS+kcCATS, kSATS=kvSATS+kcSATS). Thus, to
maintain session-integrity, the verifier cannot disclose any secret shared AEAD key in
the record phase before receiving a commitment. Since keys are not decoupled as with
CBC-HMAC, the efficiency of TLS oracles running AEAD cipher suites deteriorates for
larger record sizes. The bottleneck is the 2PC computation of authentication tags, which
evaluate algebraic structures (e.g. polynomials over large fields GF(2128) for GCM and
GF(2130 − 5) for POLY1305) over all ciphertext chunks.

Insight 1: The performance of 2PC AEAD tag computations deteriorates for larger
record sizes.

In Section 4.2.3, we optimize the 2PC complexity for TLS oracles running AEAD cipher
suites in the record phase and our optimization applies to TLS 1.3 in the 1-RTT mode.

Further, AEAD configurations require special attention as AEAD cipher suites are
not key committing [56], [57], [122]–[124]. This means that an adversary can perform
commitment attacks [125]. For example, the message franking attack finds two messages
m1 ̸= m2 and two keys k1 ̸= k2 such that encrypting m1 under k1 and encrypting m2

under k2 yield the same ciphertext ct and tag t [126]. This attack is problematic and
would break session-integrity and, with that, session-authenticity. In other words, a
successful attack allows the client to prove arbitrary TLS data as TLS-authentic in the
client challenge. TLS oracles solve this attack by letting the client disclose a commitment
of the key share to the verifier (cf. Figure 4.4) [12]. The extra commitment binds the
client to a fixed key share, which is verified during the client challenge. Fixing the key
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CMtE(pt, kc, kct ; kv, kvt, ctα=ct[end-3:], ϕ):

1. t’ = HMAC(kct + kvt, pt)
2. ctα’ = AES(kc + kv, t’)
3. assert: ctα

?
= ctα’, 1 ?

= fϕ(pt)

CAEAD(pt, kc ; kv, ct, iv, tα, ck, ϕ):

1. tα’ = [ AES(kc + kv, 0) , AES(kc + kv, iv||1) ]
2. ct’ = AES(kc + kv, pt); ck’ = commit(kc)
3. assert: tα

?
= tα’, ck

?
= ck’, ct ?

= ct’, 1 ?
= fϕ(pt)

Figure 4.5.: Circuit logic of ZKPs in the client challenge. The semicolon ; separates private
inputs (left side) from public inputs (right side). The function fϕ evaluates
conditions expressed by a public statement ϕ on the plaintext pt.

share must happen before the verifier discloses remaining session secrets (e.g. kvX in
Figure 4.4). Otherwise, an attacker can arbitrarily compute valid authentication tags
and ciphertext chunks, which is a prerequisite to perform the attack [126].

Client Challenge in Asymmetric Privacy Setting: Once the client has gathered enough TLS
data, the verifier reveals remaining secret shares to the client (cf. Figure 4.4). When the client
obtains full access to session secrets, an asymmetric privacy setting between the client and
verifier is established. Now, the client is able to access TLS data by decrypting exchanged
records which the verifier cannot.

To preserve session-integrity, the verifier confronts the client with irreversible challenges via
ZKP circuits (cf. Figure 4.5). For cipher suites running MtE, the client must prove that the
plaintext evaluates against the authentication tag which is encrypted under the last three
ciphertext chunks. For AEAD cipher suites, the client shows that the secret key share kc (i)
maps to the previously shared key share commitment, (ii) connects plaintext and ciphertext
chunks, and (iii) evaluates to intermediate values tα for the tag computation. Here, the verifier
validates public ZKP inputs (e.g. tα) out-of-circuit, which have been shared by the client.

Current TLS oracles rely on proof systems (e.g. Groth16), which efficiently evaluate algebraic
or zkSNARK-friendly arithmetic [12], [57], [97], [117], [119]. However, the ZKP circuits of TLS
oracles (cf. Figure 4.5) heavily depend on legacy algorithms (e.g. AES or SHA256) which rely
on zkSNARK non-friendly, non-algebraic arithmetic.

Insight 2: Proof systems are not tailored to the arithmetic requirements and the privacy
setting found in TLS oracles.

In the following, we secure lightweight proof systems, which efficiently evaluate non-
algebraic algorithms, against malicious actors leveraging the conditions found in the asym-
metric privacy setting.
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HVZK and Asymmetric Privacy

This section picks up on our second insight (cf. Section 4.2.2) and formalizes asymmetric
privacy. In the asymmetric privacy setting, we secure a HVZK proof system, which efficiently
proves non-algebraic statements, against malicious adversaries. Subsequently, we show how
our formal definitions apply to TLS.

Formalizing Asymmetric Privacy: In the scope of this work, we formalize asymmetric
privacy in a setting with three parties; parties p1 and p2 and a trusted dealer d. We rely on
a maliciously secure 2PC scheme Π2PC, a secure commitment scheme ΠCom, and a secret
sharing scheme ΠSS (cf. Section 2.2.2).

To set up an asymmetric privacy setting between p1 and p2, the dealer d calls ΠSS.Share
and individually shares r1 with p1 and r2 with p2. It holds that the secret shares r1+r2 sum
to r. We define two cases to commit a message string m into a commitment string c using r.
The first case requires p1 and p2 to execute a circuit C in the 2PC scheme Π2PC, where C calls
ΠSS.Reconstruct and ΠCom.Commit. In this case, p1 inputs m and r1 and p2 inputs r2. After
the commitment c has been computed and disclosed, p2 releases the secret share r2 to p1, and,
with that, initiates the asymmetric privacy setting. Now, p1 can reconstruct r. With access to
m and r, only p1 is capable of successfully proving ΠCom.Open.

For the second case, the trusted dealer computes and discloses the commitment string c on
a message string m with randomness r. If the trusted dealer performs the commitment, then
the dealer additionally shares the message string m with a party (e.g. with p1). To set up the
asymmetric privacy setting, p2 discloses the secret share r2 after receiving the commitment
string c from the dealer. In the second case, the dealer and p1 have access to r and can prove
a successful commitment opening to p2.

HVZK and Selective-failure Attacks: To improve the performance of proof computations
during the client challenge (cf. Figure 4.4), we deploy a HVZK proof challenge to evaluate
the circuits of Figure 4.5. We consider the asymmetric privacy setting between p1 as the client
and p2 as the verifier, where p1 has access to all TLS session secrets. The proof system of the
work [70] uses semi-honest 2PC based on boolean garbled circuits to achieve the notion of
HVZK and assumes an honest verifier (cf. Section 2.2.2). However, in a setting with malicious
adversaries, semi-honest 2PC is susceptible to selective failure attacks [79]. Notice that if a
malicious p2 intentionally corrupts one or multiple rows of the garbling tables, p2 can learn
information on which row has been evaluated by p1. On top and with knowledge of the row
permutations, p2 is capable of deriving secret information of p1’s inputs. In the following
subsection, we introduce a secure validation protocol which is unilaterally performed by p1.
The validation detects a maliciously acting p2 before any secrecy leakage occurs.

Unilateral Secure Validation: The unilateral secure validation is performed once p1 obtains
all public semi-honest 2PC parameters of the HVZK proof system [70], which comprise
garbled tables G(CHVZK) and external labels e (cf. Section 2.2.3). The parties p2 and p1
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Unilateral Secure Validation

Figure 4.6.: Secure unilateral validation protocol in the asymmetric privacy setting to assert
correct garbling of CHVZK.

exchange wire keys k corresponding to the private inputs pt via the OT1
2 oblivious transfer

protocol [48] and p2 omits sharing the output label decoding table T l−d. The party p2, acting
as the garbler and verifier, is convinced of the HVZK proof if p1, acting as the evaluator and
client, returns the output wire key that corresponds to the output bit 1. Depending on the
cipher suite, the 2PC circuit CHVZK implements the logic of the circuits CMtE or CAEAD (cf.
Figure 4.5) and yields a 1 if all assertions are satisfied.

In the default HVZK proof system [70], the client p1 must return the output wire key back
to the verifier p2 to complete the HVZK proof protocol. However, to achieve security in a
malicious setting, we require p1 to run a new secure validation phase (cf. Figure 4.6). The
unilateral validation enforces p1 to share a commitment ckout of the output wire key. After
sharing the commitment ckout , p2 discloses all garbling parameters of the semi-honest 2PC
computation with p1. Revealing all garbling parameters allows p1 to verify if CHVZK has been
garbled correctly by recomputing the garbled circuit. And, due to the asymmetric privacy
setting, p1 learns nothing new because all TLS session secrets of p2 have already been shared
with p1. If p1 detects a malicious garbling, then p1 aborts the protocol. Otherwise, p1 discloses
the commitment randomness r such that p2 can verify the correct output wire key via ckout .
We show the security of this construction in the Appendix A.3.1.

TLS Compatibility: Our formalization is compatible with the typical TLS oracle setting with
a single verifier. The server takes over the role of the trusted dealer to set up multiplicative
secret shares between the client parties via the 3PHS. Subsequently, the ECTF protocol converts
client secret shares into an additive representation. The client and verifier collaboratively
commit to TLS session parameters by computing authentication tags and ciphertext chunks
(cf. first case commit in Section 4.2.2). Otherwise, the client-side parties receive commitments
by capturing server-side traffic (cf. second case commit in Section 4.2.2). Remember that
if a cipher suite is not key-committing (e.g. AEAD cipher suites), then the verifier needs
an additional key share commitment from the client. Access to secure commitments is a
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Figure 4.7.: Mutual SHTS verification at client parties. Red boxes indicate values derived in
maliciously secure 2PC protocols.

prerequisite for the asymmetric privacy setting. Next, the verifier initiates the asymmetric
privacy setting by disclosing secret shares of TLS parameters to the client. From here on, only
the client is capable of computing valid commitment openings. Thus, in the client challenge,
a HVZK proof system with our unilateral validation protocol can be deployed.

4.2.3. Optimizing End-to-end Performance

Our second contribution applies to TLS oracles running the TLS 1.3 1-RTT mode and targets
our first insight (cf. Section 4.2.2) by mainly optimizing 2PC computations in the record
phase. In detail, we show how client parties can securely derive and authenticate the SHTS
parameter in a malicious security setting. Subsequently, we leverage the SHTS authenticity to
deploy an optimized garble-then-prove paradigm, which entirely relies on semi-honest 2PC
techniques.

Authenticating SHTS

This section explains why pre-fetching cipher suites is a necessity to reliably validate SHTS
authenticity. Further, we show how our SHTS validation sequence counters possible attacks.

Pre-fetch for Immediate Server-side Handshake Transcript: We consider the 1-RTT mode of
TLS 1.3, where servers immediately derive session secrets and return authenticated handshake
messages upon the reception of compliant CH messages (cf. Figure 4.7). Even though TLS 1.3
allows the configuration of three AEAD cipher suites and two possible parameters for the key
agreement (ECDHE with X25519 or P-256), clients may select an unsupported parameterization.
In this case, TLS parameters must be renegotiated. To prevent any renegotiation, we expect
clients to perform a single pre-fetch call to detect possible configurations. This way, clients and
verifiers can reliably expect and capture the server-side handshake transcript if a compliant
CH message is sent to the server.
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Compute and Disclose of SHTS: Once clients receive the server-side handshake traffic, both
the client and verifier continue to derive secret-shared session parameters via the 3PHS (cf.
Section 2.2.3) and the ECTF protocol (cf. Section 2.2.3) [11], [12]. In the end, the verifier locally
maintains s1 and the client locally keeps s2 and it holds that s1 + s2 = DHE. To derive SHTS,
the verifier and client evaluate the circuit CSHTS (cf. Table 4.1) in a maliciously secure 2PC
system. Similar to the works [12], [56], [97], we leverage the fact that, during the handshake
phase, the client can securely disclose the SHTS parameter to the verifier. Even though the
verifier knows SHTS, the key independence property of TLS 1.3 prevents the verifier from
learning the HS secret [73], as HS is protected by hkdf.exp (cf. line 5 and 17 of Figure 2.5).
Without access to HS, the adversary cannot derive application traffic keys from HS.

Attacking SHTS Authenticity: The server-side handshake transcript contains the SF mes-
sage, which can be seen as a commitment to established TLS session parameters [56], [97].
We require both client parties to capture the server-side handshake transcript before the client
and verifier compute SHTS via the 2PC circuit CSHTS (cf. Figure 4.7). This condition prevents
adversaries from forging the authenticity of SHTS as client parties can validate handshake
session secrets against the commitment (cf. Appendix A.3.2).

To provide more context, the following aspects must be considered. Our system model
prevents the adversary (i) from compromising the server’s private key and (ii) from accessing
full handshake secrets through the 3PHS and the ECTF protocol. Thus, to obtain a valid
signature from the server, an adversary must replay a previous and individually established
handshake transcript. The adversary can take on the following two roles:

1. Malicious Client: If the adversary takes the role of the client, then the verifier injects
fresh randomness by determining the CH transcript. As a consequence, a replayed
handshake signature does not match the new transcript and the adversary cannot sign
a new transcript without the server’s private key. Thus, in this scenario, the signature
verification detects malicious behavior.

2. Malicious Verifier: If the adversary acts as a verifier, then the adversary determines the
CH message transcript which the client cannot. This gives the adversary the opportunity
to replay a previously established handshake session, where the adversary knows
the session secret DHE. If we allow the computation of SHTS before capturing the
server-side handshake transcript, the following attack is possible3: The adversary
picks a random input to compute SHTS’ and recomputes the last part of a previously
established handshake transcript using SHTS’ (cf. lines 8,9,11 of Figure 2.5). Once the
adversary shares the forged server-side handshake transcript, the client accepts because
the SF validation succeeds. Afterwards, the adversary accepts any incoming requests
from the client which could contain confidential data (e.g. credentials). This attack
compromises session-authenticity and session-integrity. However, if the client honestly

3This attack applies to the wok [12] in the TLS 1.3 mode. The work [119] indicates this attack. Our work provides
the first full attack description and proposes a countermeasure.
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Table 4.1.: Mapping of TLS Computation traces to 2PC circuits. We use XHTS for SHTS/CHTS
and XATS for SATS/CATS.

Circuit Computation Trace

CXHTS DHE=s1+s2; DHE to XHTS
C(k,iv) DHE=s1+s2; DHE to (kcXATS, kvXATS, ivXATS)
CCB2+ (kcXATS, kvXATS, ivXATS) to CB2+

Ct (kcXATS, kvXATS, ivXATS, ct) to t
Copen DHE=s1+s2; DHE to SHTS; DHE to CB

proceeds the 2PC computations according to TLS 1.3, then session-confidentiality on
record phase data holds.

We close this attack with the previously defined condition, where client parties capture
the server-side handshake transcript before the joint evaluation of SHTS. Here, the
adversary is faced with the following challenge. The adversary must replay a handshake
transcript which complies with the prospective SHTS value. Since the adversary
cannot predict the outcome of CSHTS without access to the secret s2 of the client, the
adversary has negligible chances in guessing a compliant SF message beforehand (cf.
Appendix A.3.2). This way, session-authenticity and session-integrity hold.

SHTS Validation: The validate SHTS, the client and verifier match the locally computed
SF’ values against the SF value from the server. To access SF, both client parties derive
the handshake traffic secrets kSHTS, ivSHTS and decrypt server-side handshake messages.
Additionally, the client parties assert the validity of the server’s certificate. Afterwards, the
client side jointly computes CCHTS using maliciously secure 2PC, which outputs the Client
Handshake Traffic Secret (CHTS) to the client. With CHTS, the client completes the handshake
by computing and sharing the CF message.

Garble-then-prove with Semi-honest 2PC

We apply a modified garble-then-prove paradigm [117]. In the garble phase, we replace 2PC
computations based on authenticated garbling with lightweight semi-honest 2PC computa-
tions that do not require authenticated garbling. We show the security of our construction in
the Appendix A.3.3.

Intuition of Garble-then-Prove: The idea behind the garble-then-prove paradigm is as
follows. If a malicious client acts as the garbler of the semi-honest 2PC system, then the client
can mount selective failure attacks throughout the record phase. However, as TLS oracles
eventually disclose session secrets of the verifier, the malicious client learns nothing beyond
what the honest client would have learned. The prove phase is supposed to (i) detect any
cheating activities of the client and (ii) provide the verifier with a conditional abort option
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CzkOpen(s2, pt ; s1, Iopen, ct, t, SHTS, ϕ):

1. SHTS’, CB’ = Copen(s1, s2, Iopen)
2. ct’ = CB’ ⊕ pt, t’ = [ CB0’ , CB1’ ]
3. assert: SHTS’ ?

=SHTS, ct’ ?
= ct, t’ ?

= t, 1 ?
= fϕ(pt)

CtpOpen(s2 ; s1, Iopen, CB, t, SHTS):

1. SHTS’, CB’ = Copen(s1, s2, Iopen), t’ = [CB0’, CB1’]

2. assert: SHTS’ ?
=SHTS, t’ ?

= t, CB ?
= CB’

Figure 4.8.: Extending the ZKP circuit CAEAD (cf. Figure 4.5) to the HVZK circuit used by our
E2E-optimized TLS 1.3 oracle for the privacy-preserving and transparent client
challenges.

before any data attestations occur. To do so, the prove phase recomputes and compares all
semi-honest 2PC computations of the client against securely authenticated session parameters
at the verifier (cf. Section 4.2.3).

Garble Phase: In the garble phase, the client and verifier collaboratively evaluate multiple
2PC circuits (cf. Table 4.1), where the client acts as the garbler and the verifier acts as the
evaluator. In the handshake phase, the circuit C(k,iv) yields secret-shared application traffic
secrets to the client and verifier. The additive relation of secrets (e.g. kXATS=kcXATS+kvXATS)
continues to hold.

In the record phase, the 2PC circuit CCB2+ outputs counter blocks CBi (cf. Figure 2.3) to the
client, with i>1. To prevent commitment attacks on records, no block CBi ever includes any
CB0,CB1 blocks. To encrypt a request, the client computes ctreq = CB2+ ⊕ ptreq and shares the
ciphertext ctreq with the verifier. Next, the client parties jointly compute treq using Ct and the
verifier sends the request to the server. After client parties receive a response (ctresp, tresp), the
verifier discloses all session secrets and initiates the asymmetric privacy setting. Notice that
computing the AEAD key commitment ck is redundant because, in the client challenge, we
can consider SHTS as an authenticated commitment on session secrets.

Prove Phase: The prove phase starts with the asymmetric privacy setting, where the verifier
has captured the TLS 1.3 transcript and disclosed session secrets to the client. The prove phase
of this work considers the authenticated SHTS parameter as a commitment string. Further,
the 2PC circuit CHVZK of the client challenge is set to the CzkOpen algorithm (cf. Figure 4.8).
The circuit Copen derives SHTS and counter blocks CBi, where the list of indices Iopen indicates
the plaintext/ciphertext chunks of interest. The client determines Iopen according to plaintext
chunks that are passed to fϕ. Notice that the assertion of the authentication tag is reduced
to comparing intermediate values CB0, CB1. The in-circuit derivation of CB0, CB1 hides
application traffic keys from the verifier and frees CzkOpen from expensive algebraic operations
(e.g. multiplication of GF polynomials). Remember that the HVZK proof system which
evaluates CzkOpen runs the unilateral secure validation to detect a malicious verifier. After the
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client challenge, the verifier derives tresp’ from t’ out-of-circuit and asserts if tresp’ ?
=tresp. If all

assertions succeed, the verifier attests the TLS 1.3 data of the client.

Additional Considerations: The following aspects complete the context of TLS oracles
beyond our contributions.

1. Operation Modes: TLS oracles can be operated in two different modes, which introduce
distinct arrangements in the prove phase. Both operation modes depend on a list of
indices Iopen, which the client shares to the verifier. The client selectively determines
Iopen once all session secrets are obtained. Otherwise, the client could not access data of
server-side records. The verifier uses Iopen to identify public inputs in form of ciphertext
chunks for the verification of CHVZK (cf. Figure 4.8).

• Transparent Mode: In the transparent mode, the verifier checks (i) if the AEAD
encryption of presented plaintext chunks matches the captured ciphertext transcript
and (ii) if a computation trace from the encryption key to SHTS exists. To prevent
the verifier from learning TLS encryption keys, the transparent mode requires an
adapted circuit CtpOpen (cf. Figure 4.8). CtpOpen takes as public input counter blocks
CB, which have been computed and shared by the client. Further, CtpOpen asserts
SHTS, counter blocks CB, and authentication tags via intermediate values. The

assertions 1 ?
= fϕ(pt) and ct ?

=ct’=CB ⊕ pt are computed out-of-circuit because
plaintext chunks are publicly disclosed.

• Privacy-preserving Mode In the privacy-preserving mode, the client does not share
pt. Instead, the client shares Iopen and proves knowledge of authentic plaintext data
via the HVZK proof system. To do so, the client evaluates the 2PC circuit CzkOpen
and applies the unilateral secure validation.

Example: We assume that TLS is configured to use AES in the GCM mode. Further,
we assume that the TLS data of interest for the validation according to fϕ is contained
in ct3 of the response (ct, t). In this case, the index i=3 is included in the list Iopen.
With Iopen, the zkOpen circuit is able to compute the right CB2+index, and consider
CB5=AES(k, iv|| . . . 5) for the computation of ct5’=CB5 ⊕ pt5. If the assertions against

public inputs succeed (e.g. ct5’ ?
= ct5), and CB5 has been derived with secrets that match

a verified SHTS, then the data pt5 preserves session-integrity and session-authenticity.

2. Processing Multiple Records: Concerning the collaborative processing of multiple
records in the record phase, we differentiate computations with respect to the following
dependencies:

• Requests are independent of responses. If no request depends on the contents
of a response, then the circuit CCB2+ is only called for the compilation of requests.
Response CBs can be locally computed by the client once the asymmetric privacy
setting enforces the disclosure of full session secrets to the client.
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• Requests depend on responses. If a request of number n > 1 depends on
the contents of responses ct=[ct1, . . . , ctl ], where each response ctm has an index
m < n, then the client and verifier perform l executions of the circuit CCB2+ . The
evaluation of l circuits CCB2+ yields l vectors of encrypted counter blocks CB2+ to
the client. With l vectors of CB2+, the client is capable of accessing the contents
of the responses ct=[ct1, . . . , ctl ] to construct the n-th request. To preserve MITM-
resistance and prevent commitment attacks, it must hold that the verifier intercepts
the pair (ct, t) before the circuit CCB2+ outputs the corresponding CB2+ of response
ct.

3. Data Attestation:

If the client challenge succeeds successfully, the verifier attest to the verified TLS data.
The attestation structure depends on the operation modes. In the transparent mode, the
verifier hashes verified TLS data and signs the hash. Thus, the certification parameter
pcert=(t, ϕ, pk, σ) of the transparent attestation includes a signature σ=ds.Sign(sk,[ϕ, t])
computed at time t. The verifier overwrites the statement ϕ = H(pt) to the hash of
verified data such that every third party can evaluate presented TLS data against ϕ

and against arbitrary statements. In the privacy-preserving mode, the structure of
pcert remains the same except that the statement ϕ expresses asserted constraints. The
privacy-preserving attestation convinces any third party of the fact that the verifier
successfully validated TLS data provenance against the statement ϕ at time t. The
certificate pcert enables verifiable TLS data provenance as pcert can be verified by any
third party who trusts the verifier and the server.

4.2.4. Evaluation

The evaluation describes the software stack and measures the impacts of our two optimizations.
The first optimization improves proof computation times for TLS 1.2/1.3 oracles. The second
optimization improves the E2E performance of TLS 1.3 oracles. We provide micro benchmarks
on a circuit level in the Appendix B.1.1. Initially, we provide a cipher suite analysis to justify
our choice of cipher suite implementation.

Cipher Suite Analysis

TLS allows parties to select multiple cipher suites. In order to implement secure computation
circuits for the most used cipher suite, we perform a cipher suite analysis.

To evaluate cipher suite support among today’s APIs, we scanned the first 15k entries of the
top-1m.csv.zip list4. To perform the scan, we rely on a publicly available TLS cipher suite
scanner5. We remove scans which encounter network errors (e.g. no such host) or TLS errors
(e.g. EOF, handshake failures). The cipher suite support distribution is depicted in Figure 4.9.
TLS 1.2 configured with GCM reaches a support of 73.5% while TLS 1.2 CBC-HMAC reaches

4https://github.com/PeterDaveHello/top-1m-domains
5https://github.com/TeoLj/TLSscanner
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Figure 4.9.: TLS cipher suite scan performed at the 11th of June 2024. Green bars refer to TLS
1.3 cipher suites and yellow bars indicate TLS 1.2 cipher suites.

70.05%. TLS 1.3 support is lower at 55.8%. Even though TLS oracles relying on CBC-HMAC
have efficient record phase computations, multiple attacks on the CBC vMAC-then-encrypt
pattern have been introduced [127]–[129]. Even though countermeasures exist, protecting
records with the CBC vMAC-then-encrypt pattern is not recommended anymore [130]. Our
distribution of scans aligns with this recommendation. Further, most endpoints support
AEAD cipher suites, where the TLS 1.2 support is 17.7% ahead of TLS 1.3.

Implementation

Tooling: We implement the 3PHS by modifying the Golang crypto/tls standard library6 and
configure the NIST P-256 elliptic curve for the ECDHE. Our ECTF conversion algorithm uses
the Golang Paillier cryptosystem7. We use the mpc library8 to access semi-honest 2PC based
on garbled circuits, which supports the optimizations free-XOR [131], fixed-key AES garbling
(AES-NI instruction set) [132], and half-gates [133]. We adjust mpc to output single wire
labels if we execute 2PC circuits in the context of the HVZK proof systems. We rely on the
ag2pc framework9 to implement maliciously secure 2PC circuits in TLS 1.2. To compute ZKPs,
we rely on the gnark framework [134]. We open-source our secure computation circuits10.

6https://pkg.go.dev/crypto/tls
7https://github.com/didiercrunch/paillier
8https://github.com/markkurossi/mpc
9https://github.com/emp-toolkit/emp-ag2pc

10https://github.com/jplaui/circuits_janus
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Figure 4.10.: Scalability analysis of ZKP circuits, where circuits CMtE (dotted) are compatible
with TLS 1.2 only. Circuits Chvzk leverage Janus optimizations. Lines closer to the
bottom right corner are "better" and prove more data in less time.

Based on our cipher suite analysis, we implement the secure computation circuits AES128
and SHA256 to achieve compatibility with the most popular TLS 1.2/1.3 cipher suites.

E2E Benchmarks: The numbers of TLSn11 and DiStefano12 are reproduced by running
publicly available experiments (cf. Table 4.3). Due to the fact that Deco [12] is closed source,
we open source our Decozk re-implementation13, which executes TLS 1.2 configured with
CBC-HMAC. The implementation of Janus12 is equal to Decozk except for the post-record
phase. Here, Janus12 employs the HVZK proof system implemented with the mpc framework.
The TLS 1.3 oracles DecoProxy and Janus13 rely on AEAD cipher suites which we implement
with the mpc library. Malicious 2PC circuits computed with the mpc framework use the
dual-execution mode [80]. We rely on gnark to implement ZKP circuits for Deco, DecoProxy,
and Origo.

Performance

All performance benchmarks have been averaged over ten executions and have been collected
on a MacBook Pro configured with the Apple M1 Pro chip and 32 GB of RAM.

Client Challenge Benchmarks: Concerning our first optimization, we evaluate ZKP
circuits that are used during the client challenge. We execute the traditional circuits Czk

AEAD,
Czk

MtE (cf. Figure 4.5) as a baseline using the fastest gnark proof system Groth16. We execute
the circuits Chvzk

zkOpen as an AEAD variant with the SHTS assertion (cf. Figure 4.8) and Chvzk
MtE

using the HVZK proof system. We depict the protocol support of the circuit variants in
Table 4.2. Generally, the HVZK circuits (cf. red in Figure 4.10) achieve the best performance,
where MtE-based circuits are ahead of AEAD circuits. This makes sense as the circuit Chvzk

zkOpen
requires additional logic of constant size to derive and validate keys against SHTS. For larger

11https://github.com/tlsnotary/tlsn/tree/main
12https://github.com/brave-experiments/DiStefano/tree/main
13https://github.com/jplaui/decoTls12MtE
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Table 4.2.: Mapping protocols to cipher suites which support the configuration of the suite of
algorithms ECDHE_ECDSA_AES128_SHA256.

Mode Variant Protocols

12_GCM AEAD TLSn
12_CBC MtE Deco,Janus12
13_GCM AEAD DiStefano, DecoProxy, Origo, Janus13

data sizes, this overhead diminishes as AES (e.g. AEAD circuits) or SHA256 (e.g. MtE circuits)
dominate the circuit complexity. Further, we benchmark the transparent validation of TLS
data via CtpOpen (cf. Figure 4.5), which outperforms the privacy-preserving validation for data
sizes beyond 500 bytes.

Optimized End-to-end Performance: We present E2E benchmarks of open-source TLS
oracles in Table 4.3. Concerning TLS 1.2 (cf. top part of Table 4.3), we run Janus12 using
CBC-HMAC to benefit from constant size circuits in the record phase. For TLSn, which runs
TLS 1.2 using AEAD, record phase 2PC complexity is determined by the size of the record
(cf. row 1 vs row 2/3 in Table 4.3). Even though the post-record communication increases,
Janus12 achieves the fastest post-record execution benchmarks. For instance, the HVZK proof
computations of Janus12 outperform related works by a factor of 9 in the Local Area Network
(LAN) setting.

Concerning TLS 1.3, Origo and DecoProxy circumvent 2PC computation of the record phase
by introducing an additional trust assumption (clients cannot mount MITM attacks). As a
result, these works behave equal to the TLS 1.3 baseline in the record phase. DiStefano sets the
fastest handshake execution times, which we link to the enhanced MtA algorithm in the ECTF
protocol [119], [135]. Our implementation does not incorporate handshake optimizations
proposed by DiStefano yet, because we achieve practical handshake benchmarks with our
Paillier-based MtA conversion of session secrets. Janus13 runs an AEAD cipher suite and
evaluates 8 times more data (256b request, 2kb response) while remaining practical in all
protocol phases.

4.2.5. Discussion

The discussion presents related works and summarizes remaining limitations and future
work directions. We summarize our feature analysis of related works in the Table 4.4.

Related Works

The work XYWY23 [117] introduces the garble-then-prove paradigm based on semi-honest
2PC with authenticated garbling. After the garble phase, authenticated garbling bits are
transformed into a Pedersen commitment which can be opened in a zkSNARK proof system.
By contrast, our E2E optimization for TLS 1.3 derives SHTS authenticity in a malicious setting.
In the garble phase, we deploy semi-honest 2PC without authenticated garbling. To compute
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Table 4.4.: Related works feature comparison.
Paper Type Key Feature

TLSn/Deco Notary 3PHS & 2PC-based TLS Client
Zombie Proxy Pad Commit
Origo Proxy 2PC-free
DiStefano Notary Secure MtA & Browsing Privacy
XYWY23 Notary Garble-then-prove & Pedersen Commit
Janus Proxy Secure 2PC-based hvZKP

proofs efficiently, our work relies on a 2PC-based HVZK proof system with a unilateral
validation phase.

The work Zombie [57] notices that legacy algorithms constitute over 40% of TLS computa-
tions and decouples stream cipher computations with a pad commitment. The pad commitment
is used to partly outsource legacy algorithms from the ZKP circuit to a pre-processing phase.
We tackle the arithmetic requirements of legacy algorithms with a well-suited HVZK proof
system.

The work DiStefano [119] secures a leakage of the Paillier-based MtA conversion proto-
col [136] and achieves browsing privacy, where the verifier does not lean which servers the
client queries.

Our contribution Origo [97] proposes a 2PC-free oracle solution and reduces 2PC bandwidth
overheads at the cost of requiring an additional security assumption (clients cannot mount
MITM attacks).

Another way to improve the efficiency of the client challenge is to decouple the maliciously
secure 2PC evaluation of CBs, which is done in the works DiStefano, TLSn, Deco [11], [12],
[119]. Notice that this optimization applies to TLS oracles which run AEAD cipher suites.
Here, the client obtains output wire keys and shares a commitment of CB wire keys with
the verifier. With the commitment, the verifier discloses the wire key decoding table as well
as secret shares to the client. The client is now able to verify the correctness of CCB2+ , access
response data, and select a transparent data opening. Optionally, clients can prove TLS data in
a ZKP circuit which (i) takes in private output wire keys, (ii) computes CBs with the decoding
table as public input, and (iii) authenticates TLS data by XORing a plaintext with CBs to the
intercepted ciphertext. This approach has the following limitation. The wire key possession
before obtaining a decoding table prevents the client from accessing response data such that
the client remains with two options. With knowledge of the plaintext structure, the client
commits to a selection of output encodings, which correspond to the CBs of interest for the
privacy-preserving data opening. Without knowledge of the plaintext structure, the client
uses a merkle tree commitment structure to commit to all output encodings and selectively
opens CBs in the ZKP circuit via merkle tree inclusion proofs [11]. Due to frequent updates,
API data is unlikely to remain static over a longer period of time such that the scenario of
not knowing plaintext structures prevails. Our work, in contrast, allows clients to selectively
prove plaintext data during the client challenge.
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Limitations

A reliable execution of Janus optimizations for TLS 1.3 oracles requires an additional pre-fetch
call. We recommend that operators of the verifier pre-fetch servers before launching oracle
sessions. This way, verifiers can provide seamless attestation services for clients. We like to
highlight that the verifier as a proxy is susceptible to blocking if server-side endpoints detect
reoccurring Transmission Control Protocol (TCP) sessions from the same proxy IP [57], [137].
In this case, we recommend running the verifier as a notary service behind the client (as
described by TLSn, Deco [11], [12]). Our work does not investigate compression techniques
to lower 2PC bandwidth overheads. Neither does our work currently support the MtA
optimizations pointed out by DiStefano [119] (1. ring-based MtA instead of Paillier-based
MtA, 2. parallelized MtA for TLS 1.3 authentication tags). We consider these topics for future
improvements.

Disclaimer: Legal and Compliance Issues

This section informs users and companies running the Janus TLS oracle about subsidiary
conditions and agreements. As TLS oracles are legacy-compatible, companies running the
verifier connect seamlessly to web endpoints which are queried by users. Web endpoints
do not necessarily notice the verifier. Legal issues (e.g. copyright infringements) arise if
users export proprietary content or declare false data ownership. In this case, companies are
supposed to deny content. If companies operate oracles in the privacy-preserving mode, then
companies learn nothing from transport data beyond the statement validity. In the transparent
mode, companies can surveil opened data in plain. Users must be aware that companies
learn network layer data (e.g. IP addresses, domains), which is required to operate the proxy
service. Tracking or profiling oracle data may cause regulatory compliance violations.

Asymmetric Privacy & Related Concepts

Our definition of asymmetric privacy relates to the concept of a Trapdoor hash function (THF)
between two parties [138]. THF guarantee function privacy for the sender and input privacy
for the receiver. The private function evaluates receiver data at a private index. In contrast,
our asymmetric privacy setting ensures input privacy for a sender and convinces the receiver
of a public function which holds on the entire sender input.

Further, to differentiate against other notions such as asymmetric differential privacy [139],
our notion of asymmetric privacy targets a threshold number of parties with access to
commitment secrets.

Applications

Generally, the Janus optimizations make ZKP-computing clients practical in constrained
environments (e.g. browsers, mobile). And, with that, serve existing oracle applications
such as confidential financial instruments, legacy credentials, or the combating of price
discrimination [12]. On top, our scalability benefits open new application fields where larger
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data sets or documents require proofs of provenance. In this context, our contributions help
in fighting the dissemination of disinformation by attesting generative AI content, which
is among the goals of the Coalition for Content Provenance and Authenticity (C2PA) [113],
[140].
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4.3. Origo: Bandwidth-optimized Data Provenance

TLS oracles enable content authenticity and integrity beyond the two-party TLS session. As
such, clients can present a verifiable notion of TLS data to external parties which are not
part of the TLS session. With our contribution Origo [97], we remove any 2PC computation
dependence of TLS oracles and, with that, drastically improve bandwidth requirements. Our
optimization relies on a weaker network adversary which is assumed to be incapable of
mounting MITM attacks between the server and the oracle verifier.

Motivation: TLS oracles operate in a three-party setting, where an additional verifier attests
to the integrity and authenticity of TLS data. Before any attestation occurs, the verifier takes
part as an additional client in the TLS session. The collaborative TLS client side is constructed
using MPC techniques [11], [12]. MPC techniques ensure that, instead of having full access to
TLS session secrets, the verifier and client only keep a secret shared part of session secrets.
This way, the verifier is able to witness the integrity of TLS conform computation by the
client without ever getting access to full session secrets. Without full access to session
secrets, the verifier cannot learn which data is exchanged between the client and the server.
As a consequence, in order to attest valid data, the verifier challenges the client via a ZKP
computation. If the assertions made by the ZKP convince the verifier, then the verifier attests
TLS data from the client.

Challenge: Even though the efficiency of PET techniques in TLS oracles has been steadily
improved, PET computations continue to introduce costly overheads, especially concerning
the network bandwidth requirements (e.g. caused by maliciously secure 2PC). As a result, no
scalable deployment of TLS oracles exist in today’s web. Our work takes on the challenge to
investigate if the network bandwidth overheads can be lowered or removed entirely. To do so,
we consider TLS 1.3 oracle in the proxy mode and rely on an additional security assumption.
Similar to the work [12] in the proxy mode, we assume a weaker network adversary who is
incapable of performing MITM attacks between the server and the verifier. However, instead
of applying this network adversary in the record phase only, our work investigates if an earlier
deployment is possible. Additionally, we analyze the commitment properties of TLS 1.3. Here,
the goal is to identify how many security guarantees can be established by extending the ZKP
circuit during the client challenge.

Contribution: We notice that in the above described setting, a malicious verifier cannot
replay a previously established TLS session in order to trick the client into accepting a new
TLS session. The reason is that every new session at the client introduces fresh randomness.
This leads to a different set of encryption keys and the verifier cannot forge a signature which
matches the new session transcripts. This way, the client can detect a malicious verifier during
the verification of the server certificate. On the other hand, a malicious verifier does not
succeed in convincing the verifier of false TLS data because we propose a new ZKP circuit
which remediates commitment attacks on TLS cipher suites (e.g. the message franking attack
on the GCM encryption mode [126]). As such, Origo tailors a ZKP circuit to the conditions
found in TLS 1.3 in the 1-RTT mode and provides verifiable provenance of TLS data with
constant communication complexity. Origo establishes itself as an interesting candidate for
TLS oracles operating in wide area networks (WANs) or for TLS oracles with bandwidth-
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constrained, client-side environments. In summary, our contributions concerning the work
Origo in this thesis are as follows:

• We describe the Origo protocol by extending the system model of the work Janus.
We put special emphasis on the description of the Origo ZKP circuit which includes
optimizations at the SHACAL-2 level.

• We disclose an entire end-to-end implementation of the Origo protocol, including ZKP
circuits14.

• We benchmark the end-to-end protocol execution of Origo

4.3.1. Extended System Model

The work Origo uses the same system roles which we define in the Janus system model (cf.
Section 4.2.1). This means that the Origo oracle verifier operates in the proxy mode as well.
Equally, all Janus system goals hold for the work Origo. In the Origo protocol, the system goal
of MITM-resistance can only be achieved with an additional security assumption which we
define in a different threat model.

Threat Model

Again, we assume secure TLS channels between servers and clients and rely on fresh CH
key share randomness injected by clients. Network traffic cannot be intercepted by clients.
Even though this is a strong security assumption, we highlight that the detection of Border
Gateway Protocol (BGP) hijacking attacks, which lead to MITM attacks [141], can be prevented
by active monitoring techniques [142]. In Origo, we expect completeness, soundness, and
zero-knowledge to hold for the employed ZKP system. Equally as in the threat model of
our contribution Janus, we assume up-to-date DNS records and honest servers which never
share private keys that are associated with the server-side PKI certificates. System roles are
computationally bounded and learn the sizes of exchanged messages. Last, the client and
oracle verifier cannot collude.

4.3.2. Origo Protocol

This section introduces the Origo protocol according to the illustration of Figure 4.11 with
respect to different TLS phases. Origo works in the three-party setting of TLS oracles, where
the verifier eventually attests to TLS data.

Handshake Phase

Initially, the client sets up a TCP connection with the verifier who operates as a proxy. Next,
in contrast to related works [11], [12], [119], no 3PHS is performed. Instead, the client sets up

14https://github.com/jplaui/origo
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Figure 4.11.: Illustration of the Origo protocol with respect to the TLS 1.3 protocol phases.
Besides message exchanges, the figure highlights additional processing require-
ments at the verifier and the client.

a TCP connection to the verifier and uses the Server Name Identifier (SNI) extension of TLS to
communicate the domain of the server (destination address) via the CH message. The verifier
parses the CH message, extracts the server name, and resolves the server’s IP address using
DNS. Afterwards, the verifier can successfully set up a TCP session with the server in order to
tunnel a dual message exchange using both TCP sessions (client session and server session).
Right after both TCP connections exist, the verifier forwards the CH message to instantiate the
TLS handshake between the client and the server (cf. handshake phase of Figure 4.11).

After the TLS handshake, the verifier has access to the handshake message transcript. To
complete the TLS session agreement, the client, among other values, derives the SHTS secret,
which, due to the TLS 1.3 key independence property, can be securely disclosed to the
verifier [73]. With SHTS, the verifier is able to decrypt the server-side handshake traffic. This
gives the verifier access to the server’s PKI certificate and the server finished (SF) digest.
The next task at the verifier is the verification of the SF digest and the PKI certificate. If the
validation fails, the verifier aborts the protocol. Otherwise, the client proceeds with the TLS
record phase.

Record Phase

In the record phase, the client and server start to exchange application-specific data. Again,
the task of the verifier is to capture the record phase TLS transcript and forward exchanged
messages of the TLS parties. Once the client has collected the data to be attested by the verifier,
then the client discloses a pair of intermediate AEAD parameters (CBi

0, CBi
1) per record ri.

98



4. Policy-driven Data Provenance

Origo ZKP Circuit (dHSin, pti ; H0, H2, H3, SHTSin, hHS,opad, MSin, SATSin,
SATKin, CBi

0, CBi
1, sIVi, cti, ϕ) :

1. tksapp, SHTSin ←− KDC(dHSin, H0, H2, H3, hHS,opad, MSin, SATSin, SATKin)
2. cti ←− AES128_GCM(sIVi, pti, tksapp)
3. CBi

0, CBi
1 ←− AES128(sIVi, tksapp)

4. Assert if cti ?
= cti and if CBi

0
?
= CBi

0 and if CBi
1

?
= CBi

1 and if SHTSin ?
= SHTSin

5. Assert if 1 ?
= fϕ(pti)

Figure 4.12.: Circuit logic of the Origo ZKP proof. Function arguments behind the semicolon ;
indicate the public witness.

Notice that the index i selects record data contributing to the conviction of the verifier in
the ZKP challenge. If record data at indices k does not contribute to proving a statement in
the ZKP challenge, then the records rk require no further processing. The verifier uses the
all pairs (CBi

0, CBi
1) and the captured ciphertext chunks (cti

j) to compute TLS 1.3 message
authentication tags ti. Subsequently, the verifier matches recomputed tags ti with captured
message authentication tags. If the tag verification fails, then the verifier aborts the protocol.
Otherwise, the parameters CBi

0, CBi
1 can be considered authentic and used as public inputs to

the ZKP computation in the post TLS phase.
In addition to the counter blocks CBi

0, CBi
1, the client discloses additional parameters to the

verifier. All values together constitute the public witness which is used for the evaluation
of the ZKP circuit (cf. Figure 4.12). The Figure 4.15 indicates the remaining out-of-circuit
computations that concern the public witness. Here, the lines denoted by the initial character
v are executed by the verifier and validate the witness parameters against intercepted transcript
values. The lines denoted by the initial character p generate public witness parameters and
are computed by the client who, in the ZKP context, acts as the prover.

Post TLS Computations (Challenge Phase)

The post record phase executes the ZKP challenge between the verifier and the client. Here,
the ZKP circuit evaluates the logic which is depicted in Figure 4.12. The key derivation
computation (KDC) of the ZKP circuit evaluates the lines indicated by zk in the Figure 4.15.
The circuit ensures that malicious clients cannot mount commitment attacks on the TLS 1.3
AEAD cipher suites [126]. For example, the commitment attack of message franking finds
two keys which encrypt two plaintexts towards a same ciphertext and authentication tag (cf.
Section 4.2.3). We leverage the observation presented in the work [56], which considers the
SHTS parameter as a server-authenticated commitment. If the key to compute ciphertext
chunks evaluates successfully against the intercepted SHTS parameter, then the message
franking commitment attack becomes infeasible. Because, the ZKP computation fixes the key
by evaluating the key against the SHTS commitment. As such, no second key can be used
to encrypt a second plaintext against the ciphertext. The client can neither present a forged
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SHTS’ value because the SHTS computation depends on server-side randomness which the
verifier obtains before the client.

Once the ZKP protocol completes successfully, the verifier attests the statement ϕ and the
evaluated TLS data which has been proven by the client. The attestation structure introduces
by our contribution Janus equally applies to Origo (cf. Section 4.2.3). Since Origo does not
require any two-party MPC computations and the protocol overhead mainly depends on the
ZKP computation, we set out to optimize the ZKP circuit further. In the following, we explain
multiple optimizations to reduce the complexity of the Origo ZKP circuit.

4.3.3. Optimized TLS 1.3 Key Derivation

The following subsections describe parts of the TLS key derivation which must be recomputed
in the Origo ZKP circuit. Before we outline the ZKP circuit at the level of the SHACAL-2
compression function, we show how and where the ZKP computation of HMAC can be
optimized using SHACAL-2.

Key Derivation ZKP Circuit

The key derivation ZKP circuit is a building block used by the proxy to force the client into
computing correct and non-ambiguous TLS data provenance proofs. To recap the context
on data provenance proofs, two challenges must be checked by the proxy. First, the proxy
must verify a valid authentication of the intercepted TLS 1.3 transcript data. In order to
authenticate the transcript data, the proxy uses the server’s PKI certificate to validate the
server’s transcript signature. Second, the proxy requires the client to show a non-ambiguous
mapping of private TLS 1.3 session keys against intercepted and public TLS 1.3 transcript
data. Correctness of data provenance holds because the challenges ensure that the client
cannot forge the signature of transcript data. Thus, under the assumption of an honest server,
the transcript data is correct. Further, non-ambiguity of the session keys lets the proxy verify
that record layer data proofs comply with a correct TLS 1.3 session.

To verify non-ambiguity and, with that, correctness of session keys, the proxy demands
the client to compute a ZKP circuit. The ZKP circuit ensures integrity of a cryptographically
binding mapping between private session keys and public TLS 1.3 transcript data. A crypto-
graphically binding computation is a collision resistant function evaluation which guarantees
an explicit and unequivocal mapping of input data to a specific output. Additionally, the ZKP
circuits maintains privacy of private session keys. Thus, if the client is able to compute a valid
proof of the ZKP circuit, the proxy is convinced that non-ambiguity of session keys holds.

The naive approach to compute a cryptographically binding mapping between private
session keys and their public transcript is to follow TLS 1.3 key exchange and key derivation
specification. In the TLS 1.3 handshake, the server and client randomly choose secrets x

$←− {0, 1}256 and y $←− {0, 1}256, which they exchange based on public diffie-hellman key
exchange parameters X=gx and Y=gy. The parties involved in the secret exchange obtain a
shared secret by computing DHE←−Yx = Xy with their respective secret randomness. With
access to the shared secret DHE, server and client are eligible to compute the handshake
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ZKP Circuit: Key Derivation(HS; H2, H3, SHTS)

1. SHTS←− hkdf.exp(HS,“s hs traffic” || H2)
2. dHS←− hkdf.exp(HS,“derived”, H(“ ”))
3. MS←− hkdf.ext(dHS, 0)
4. Client Application Traffic Secret (CATS)←− hkdf.exp(MS, “c ap traffic” || H3)
5. SATS←− hkdf.exp(MS, “s ap traffic” || H3)
6. tkcapp ←− DeriveTK(CATS)
7. tksapp ←− DeriveTK(SATS)

SHTS Verification(SHTS, H7, SF)

1. f kS ←− hkdf.exp(SHTS, “finished” || “ ”)
2. SF’←− HMAC( f kS, H7)

3. SF’ ?
= SF

4. ok ?
= verifyCertificate()

Figure 4.13.: The first function in the figure presents the high-level ZKP circuit to prove the
TLS 1.3 key derivation. The second function is computed without a ZKP circuit
at the proxy to verify the finished authentication tag. We highlight variables
which count as public input with bold text.

secret HS ←− hkdf.extr(dES, DHE), which only they can compute by knowing DHE. The
parameter dES is publicly known and computes as dES ←− hkdf.exp(ES,“derived”, H(“ ”))
with ES ←− hkdf.extr(0,0). With access to HS, the client and server derive handshake and
record layer application traffic secrets. The work [56] shows that deriving HS based on
the private input y and public input Y leads to a non-ambiguous sample of HS. Further,
derivation and verification of the server certificate signature must be computed in the ZKP
circuit to verify a correct authentication of Y and, thus, HS. Doing all these computation in
the ZKP circuit is costly and luckily, a shortcut exists.

Due to the key independence property of TLS 1.3 [73], the client can disclose the SHTS to
the proxy without compromising security of HS and record layer application traffic secrets.
Leaking SHTS is possible because hkdf.exp protects HS through a pre-image resistant
hash function. TLS 1.3 achieves pre-image resistance since the input to hkdf.exp contains
sufficient secret randomness. The proxy uses SHTS to decrypt handshake traffic and to
verify the server finished message (cf. SHTS verification in Figure 4.13). Further, the proxy
accesses the server’s certificate and can efficiently verify transcript authenticity with out-
of-circuit computations. We depict the efficient key derivation circuit in Figure 4.13, where
we follow the convention of notations introduced in the work [118]. Notice that transcripts
hashes H7 = H(ClientHello||. . . ||ServerCertVfy), H2 = H(ClientHello||ServerHello), H3 =
H(ClientHello||... ||ServerFinished), and H0 = H(“ ”) are computed at the proxy. Further,
application traffic secrets are computed according to the formula tksapp | tkcapp = (key,iv) =
DeriveTK(secret) = (hkdf.exp(secret,“key”,H(“ ”), Lk), hkdf.exp(secret,“iv”,H(“ ”), Liv))), where
Lk/Liv indicate the key or iv length of the selected TLS 1.3 cipher suite. In the next section,
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Figure 4.14.: Merkle-Damgård structure of the SHA256 hash function. Values marked in
red indicate private input whereas blue background indicates public input. To
protect a secret key, the prover must compute the first f (grey background) in
circuit. All remaining intermediate hash values f (white background) can be
computed out of circuit by the verifier and checked against the public input hash
value h.

we show how the ZKP circuit can be optimized further.

HMAC Optimization

The TLS 1.3 key derivation can be further optimized when looking at the structure of HMAC
and its underlying hash function SHA256. The optimization is relevant because hkdf.extr
and hkdf.exp both make use of HMAC. Further depending on the required key size of the
TLS 1.3 cipher suite, hkdf.exp calls HMAC multiple times. By taking the TLS 1.3 cipher suite
TLS_AES_128_GCM_SHA256 as an example, 128-bit encryption keys are used such that both
functions hkdf.extr and hkdf.exp call HMAC once internally.

HMAC is computed according to the Formula 4.1, where ⊕ denotes bitwise XOR, || denotes
concatenation, and b=64 bytes when using SHA256.

HMAC(k, m) =H((K′ ⊕ opad)||H((K′ ⊕ ipad)||m))

with K′ = H(K), if len(K) > b

and K′ = K, else

(4.1)

With Equation 4.1 and the TLS 1.3 ciphersuite TLS_AES_128_GCM_SHA256, the concatenation
of the inner hash H((K′⊕ ipad)||m) (32 bytes) and K′⊕ opad (64 bytes) yields a 96 byte output,
which in turn, is the input to the outer hash function. The input to the inner hash function
is of size 64 + len(m) bytes. Thus, both hash input sizes in HMAC are above 64 bytes. If
the hash input of SHA256 is above 64 bytes, SHA256 applies the Merkle-Damgård structure
which repeats calls to an internal compression blockcipher f to reduce the input to a fixed
sized output. The compressing blockcipher SHACAL-2 of SHA256 uses 64 computation
rounds to hide its input and has not been broken [143]. Thus depending on whether the
inner or outer hash is computed, the first call of the one-way compression blockcipher inside
SHA256 already hides inputs (K⊕ ipad) or (K⊕ opad) of size 64 bytes and with that, hides
the secret K of the prover [12]. As a result, the output of the compressing blockcipher in
SHA256 can be used as public input to reduce ZKP circuit complexity.
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Initialize:
l0 = “tls13 derived”; l2 = “tls13 s hs traffic”; l3 = “tls13 s ap traffic”
l f = “tls13 finished”; lk = “tls13 key”; liv = “tls13 iv”;
mH2 = 32 || len(l2) || l2 || len(H2) || H2 || 1; mH3 = 32 || len(l3) || l3 || len(H3) || H3 || 1;
mH0 = 32 || len(l0) || l0 || len(H0) || H0 || 1; miv = 12 || len(liv) || liv || 0 || 1;
m f = 32 || len(l f ) || l f || 0 || 1; mk = 16 || len(lk) || lk || 0 || 1;
Key Derivation Trace:
1. p: hHS,ipad, lx = f (IV, 0, HS ⊕ ipad); SHTSin, _ = f (hHS,ipad, lx, mH2)
2. p: hHS,opad, l = f (IV, 0, HS ⊕ opad)
3. v: SHTS , _ = f (hHS,opad, l, SHTSin); f kS

in, _ = f ( f (IV, 0, SHTS ⊕ ipad), m f )
4. v: f kS , _ = f ( f (IV, 0, SHTS ⊕ opad), f kS

in); SF’in, _ = f ( f (IV, 0, f kS ⊕ ipad), H7 || 1)

5. v: SF’ , _ = f ( f (IV, 0, f kS ⊕ opad), SF’in); SF’ ?
= SF

10. p: dHSin, l = f (hHS,ipad, lx, mH0)
11. zk: dHS , _ = f (hHS,opad, l, dHSin)
12. p: hdHS,ipad, l = f (IV, 0, dHS ⊕ ipad)
13. v: MSin, _ = f (hdHS,ipad, l, 0bytes)
14. zk: MS , _ = f ( f (IV, 0, dHS ⊕ opad), MSin)
15. p: hMS,ipad, l = f (IV, 0, MS ⊕ ipad)
16. v: SATSin, _ = f (hMS,ipad, l, mH3)
17. zk: SATS , _ = f ( f (IV, 0, MS ⊕ opad), SATSin)

18. p: hSATS,ipad, l = f (IV, 0, SATS ⊕ ipad)
19. v: SATKin, _ = f (hSATS,ipad, l, mk)
20. zk: hSATS,opad, l = f (IV, 0, SATS ⊕ opad)
21. zk: tksapp , _ = f (hSATS,opad, l, SATKin)[:16]
22. v: sIVin, _ = f (hSATS,ipad, l, miv)
23. p: sIV, _ = f (hSATS,opad, l, sIVin)[:12]

Figure 4.15.: Computation trace of the key derivation of a single TLS 1.3 application traffic key.
The figure differentiates between in-circuit and out of circuit computations which
are separately computed by the prover and verifier respectively. The function f is
the one-way compression blockcipher SHACAL-2 of SHA256 and takes a 32 byte
input as the first argument, a padding length helper as the second argument,
and a 64 byte input as the third argument. The function returns the length l
(required for padding) of the hashed input and the output of the SHACAL-2
blockcipher. The initialization vector of f computes as IV = H[0, . . . , 7].

Figure 4.14 shows the case which applies in a ZKP circuit to compute the HMAC inner
hash Hinner = H((K′ ⊕ ipad)||m), where e.g. m =H2 is publicly known input. If m is publicly
known by the verifier, the prover can compute the grey f and disclose it to the verifier, which
computes the remaining part of the hash out of circuit. The same optimization of SHA256
is feasible when computing the outer hash Houter = H((K′ ⊕ opad)||Hinner). Thus, proving
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HMAC in a ZKP takes two evaluations of the SHACAL-2 compression function f if the
message input m is publicly known.

Key Derivation Broken Down

At the level of compression function f calls, Figure 4.15 shows the computation trace of the
TLS 1.3 key derivation. The figure summarizes computations executed at the proxy as the
verifier (v) and the client as the prover (p, zk), where zk indicates computations that are part
of the optimized ZKP circuit. Public parameters are highlighted in bold, which leaves the
value dHSin as the only private input of the client. The ZKP circuit shows that if the client
discloses hHS,opad and SHTSin as public input (line 2 and 3), SHTS (line 4) and dHS (line 11)
can be computed while non-ambiguously mapping to the only private input dHSin of the
optimized ZKP circuit. Thus, in total, deriving either one of the application traffic keys tkcapp

or tksapp takes 8 ZKP circuit computations of the SHA256 one-way compression function f
(lines 11, 14, 17, 20, 21).

4.3.4. Evaluation

For a distinctive analysis of the security and performance of TLS oracles, we present the Origo
performance benchmarks first.

Experimental Setup

All experiments are conducted on a MacBook Pro configured with 32 GB of RAM and the
Apple M1 Pro chip. All results are averaged over 10 executions. We configured the TLS
1.3 cipher suite TLS_AES_128_GCM_SHA256 using the Golang TLS standard library15. We
modified the TLS standard library to parse intermediate transcript values that can be utilized
as input parameters to the ZKP circuits of different TLS oracles. We relied on gnark [134] for
general-purpose ZKPs. We implemented SHA256 and AES128 in gnark to realize Origo. We
open-source our implementation performance evaluation in a public repository16.

Evaluation Scenarios

Due to the complexity of TLS oracles, we separate experiments into different scenarios to
evaluate the tradeoffs of different TLS oracle types.

Baseline: The experimental setup considers the execution of the TLS 1.3 protocol as the
baseline performance reference. Existing TLS oracles follow the TLS 1.3 baseline configuration
but depend on additional 2PC or ZKP communication and computation overheads.

15https://pkg.go.dev/crypto/tls
16https://github.com/jplaui/origo
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Figure 4.16.: Benchmarks of oracle specific ZKP circuits executed using the gnark framework.

End-to-end Benchmarks: In the first place, we are interested in evaluating system end-to-end
times of TLS oracles to answer the question if, from a performance perspective, considering
a stronger security assumption is beneficial. For the composition of end-to-end evaluation
times, we consider data sizes communicated between the client and the verifier, and execution
times in the LAN and WAN setting (cf. Table 4.3). In order to have a fair comparison of
end-to-end benchmarks, we evaluate a specific data provenance proof of solvency among all
oracle types. Details of ZKP gadgets can be found in the Appendix B.2.1.

Values in the execution columns of Table 4.3 sum execution times conducted by the client
and verifier. We consider 2PC online computations as 2PC overhead and ZKP Prove and Verify

calls as ZKP overhead. Offline values aggregate all computations which can be pre-computed.
For 2PC, offline computation encompasses function dependent and function independent
pre-computations. Circuit to constraint system compilation times and the ZKP setup function
count as ZKP offline execution times. Concerning the LAN and WAN setting, an additional
overhead must be considered. This overhead affects two metrics, where the first metric can
be represented by the multiplication of the number of client-side messages times the RTT
divided by two. The second metric is the transmission time which divides the communicated
bytes by the supported bit rate of the network.

ZKP Circuit Benchmarks: We evaluate Origo, Deco, and DecoProxy based on their ZKP
circuits. Further, we measure how different proof systems behave with respect to the circuit
logic (cf. Figure 4.16). This evaluation answers how much ZKP overhead Origo produces.

Discussion

We discuss our evaluation results with regard to the following three questions:
Q1: Does the Origo proxy setting, which assumes MITM attack infeasibility for malicious
clients, yield any drastic performance benefits and where?

Answer: The MITM resistance of Origo removes reliance of secure 2PC computations. As a
result (cf. Table 4.3), Origo behaves equal as the TLS baseline in the handshake and record
phases. Concerning execution times in the post-record phase, and compared to 2PC oracles,
Origo tends to have higher ZKP execution times in both the LAN, and the WAN setting. The
observations can be explained with the ZKP circuit provided in Figure 4.12, which is more
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complex due to the additional key derivation circuit. Since 2PC oracles have less complex
ZKP circuits, prove times of Origo are almost twice as long as prove times of 2PC oracles.
However, most of the ZKP computation overhead can be moved to the offline pre-computation
phase. With regards to Q1, we conclude that with respect to bandwidth requirements, Origo
clearly outperforms 2PC oracles in any type of networks except for the post record phase.
This means that for application scenarios, where ZKPs prove small data sizes but record
transcripts are large, Origo is the most beneficial solution. If ZKPs prove large record sizes,
then Origo should not be considered as a solution (cf. Figure 4.10), because Origo scales in the
same way as existing approaches with zkSNARK proof systems.
Q2: Does replacing the 3PHS with a ZKP key derivation yield a quantifiable performance
advantage in the end-to-end protocol evaluation?

Answer: Replacing the 3PHS and the 2PC-based key derivation with a ZKP circuit to
derive the TLS session key removes any secure 2PC evaluations in the handshake phase
(cf. Table 4.3). The comparison of ZKP circuits between Deco, DecoProxy, and Origo (cf.
Figure 4.16) shows that the key derivation overhead remains negligible when using any proof
systems. Our answer to Q2 states that 2PC-free proxy oracles achieve efficient TLS handshake
negotiations without compromising much performance in the record phase.
Q3: Based on the efficiency and security assessment, which deployment setting is ideal for
the benefits provided by Origo?

Answer: In lossy or unreliable networks, we suggest to consider the ZKP-based oracle
of Origo due to the communication efficiency it provides (cf. Table 4.3). Another aspect to
highlight is that Origo with the proxy mode integrates well in the web context as browsers
allow to configure proxies out of the box. Further, Origo allows to decouple the collection
of the transcript commitment and the ZKP verification. If users switch to another browser
session with the oracle verifier for the ZKP verification, then servers cannot enforce CORS
policies for orcale censorship purposes.
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4.4. Policy-driven Automation of PET Computations

Modern privacy-enhancing technologies reach new forms of computation and data privacy
according to a statement (e.g. private value > 100). However, beyond the statement expression,
the description of a private computation circuit requires knowledge of security algorithms
protecting private values.

To keep the description of private and compliant computation circuits as close to the
statement expression as possible, we introduce a new composable policy language called
zkPolicy. Further, we introduce a policy transpiler, called zkGen, to decouple the complexity
expressed via zkPolicy from the complexity of the underlying security algorithms. Our
results show that, with zkPolicy, the description of compliant data provenance circuits can
be reduced from 957 to 22 lines of code. And, with zkGen, we automate the generation and
composition of private computation circuits to a minimum effort of configuring a zkPolicy.

Motivation: Through PETs such as ZKP systems, data and computational privacy achieve
new forms of compliance, where compliance holds against a public statement. The statement
typically expresses single or multiple relations that hold on the arguments which are kept
private during the privacy-preserving computation. Even though statements can be as simple
as a comparison of two variables (e.g. bank balance > 10.000$), the security protocols keeping
variables private might rely on complex cryptographic suites and many algorithms. For
instance, to prove the data provenance of web traffic, current ZKP circuits prove unambiguous
mappings between API values and parameters of a TLS session and, with that, reach con-
straints in the range of millions [56]–[58]. Thus, creators of privacy-preserving computation
circuits need domain-specific knowledge to link security algorithms to private variables and
cannot solely specify circuits via a public statement.

Challenge: With upcoming proofs of web interactions [144], configurable network poli-
cies [57], and verifiable credential applications [145], not only the efficiency requirements
of PETs grow. More importantly, users become exposed to selecting or configuring public
statements to express the desired interaction. As such, users implicitly become the creators
of circuits. The custom selection and combination of statements introduces a new dynamic,
which is currently not covered by frameworks that implement PET systems. Instead, current
frameworks provide privacy-preserving subcircuits which are referred to as gadgets. Gadgets
are, by default, not connected to any statements such that every circuit with compliance
against a statement depends on a manual composition of gadgets to asserts the statement.

Contribution: As a remedy, our last contribution17 introduces a transpiler architecture to
automatically compose statement-compliant circuits for privacy-preserving computations.
Our transpiler, called zkGen, relies on a domain-specific policy to parse the desired public
statements. For instance, to generate ZKP circuits, zkGen takes in a ZKP-specific policy written
in a new zkPolicy language. With the zkPolicy language, we focus on a higher-level description
of ZKP circuits at a statement level and rely on an abstraction layer, the gadget library, to
connect statement arguments to the variables of security algorithms. Thus, taking as input a

17Major parts of this Section 4.4 are subject to copyright protection: © 2024 IEEE. Reprinted, with permission,
from [Lauinger, Ernstberger, Steinhorst, zkGen: Policy-to-Circuit Transpiler, IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), May/2024] (cf. Appendix D).
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Figure 4.17.: Overview of the Portal software architecture which, based on a gadget library,
transpiles a policy-specific circuit description (e.g. zkPolicy) into a constraint-
based representation of a ZKP circuit. © 2024 IEEE

zkPolicy and the gadget library, zkGen outputs a constraint-based circuit description written
in a Domain Specific Language (DSL) (cf. Figure 4.17). With that, any general-purpose
ZKP framework supporting the DSL is able to process the constraint-based circuit and, if
applicable, generate blockchain verification code (e.g. Solidity code for the Ethereum Virtual
Machine (EVM)).

Hence, with zkGen, the automated generation of compliant private computations takes a
next step towards a simple description with less lines of code than constraint-based circuit
descriptions. Further, circuits with outdated or insecure gadgets can be easily reconfigured
by updating a single keyword in a zkPolicy. In summary,

• We propose a policy language called zkPolicy, which expresses ZKP circuits via state-
ments and gadget identifiers (cf. Section 4.4.1).

• We introduce a transpiler architecture to automatically generate and compose ZKP cir-
cuits according to a policy statement defined by the zkPolicy language (cf. Section 4.4.2).

• We open source18 and evaluate zkGen and our gadget library (cf. Section 4.4.3).

4.4.1. zkPolicy Language

The zkPolicy language gives the opportunity to describe a ZKP circuit by connecting policy-
relevant variables in a new data model. The data model builds upon a gadget library abstraction
layer which groups ZKP subcircuits according to security algorithms.

Data Model

The zkPolicy language allows configurations based on the following data model, where

Relations are objects connecting two arguments.

18https://github.com/jplaui/zkGen
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1 {"name": "zkPolicy_tls13openSessionCommit",
2 "relations":[{
3 "value": {
4 "type": "s-string",
5 "size": 5,
6 "protection": {
7 "algorithm": "secure_channels:openRecord_TLS13AES128GCMSHA256",
8 "parameter": "value"
9 }

10 },
11 "number": {"type": "p-integer"}
12 }],
13 "constraints": [
14 "0:value->-0:number",
15 "0:value:protection:algorithm:key-=-commitments:mimc:message"
16 ]
17 }

Figure 4.18.: JSON file expressing a ZKP circuit with the zkPolicy language. © 2024 IEEE

Arguments are key-value pairs, where keys express the name of an argument. Argument keys
are unique in the scope of a relation. Argument values are objects with three key-value pairs;
a type, a size, and a protection.

Types specify if the argument counts as secret or public by concatenating a "s-" or "p-" with
an argument type t. Currently, zkGen supports two argument types with t∈{string, integer}.
Sizes specify the number of characters in an argument of type t=string and do not exist for
arguments of type t=integer.

Protections use objects as values and rely on two key-value pairs to connect an argument to a
security algorithm. To do so, protections point to a security algorithm of the gadget library via
a string identifier "algorithm_type:algorithm_id" (cf. Figure 4.18). Further, protections map an
argument to a security algorithm parameter via the "parameter" key.

Constraints are strings expressing assertions between elements such as arguments, protections,
or both. Assertions rely on comparison operators (e.g. <,>,∈, etc) between two dashes.
Multiple dashes express a logical OR between appended elements and the first element.
Multiple constraints on the same element express a logical AND. The key words if and for
follow a transpiler-specific syntax and are used to express conditions and loops. If constraints
reference protection parameters, the protection string identifier is combined with the parameter
name. If constraints reference arguments, the relation index is combined with the argument key
or argument path towards a protection parameter.

zkObjects represent a complete zkGen policy configuration using the zkPolicy language (cf.
Figure 4.18). The zkObject comprises three key-value pairs which define a list of relations, a
list of constraints, and a name.
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1 {"commitments": {
2 "mimc": {
3 "commit_string":
4 {"type": "p-string", "size": 32},
5 "witness":
6 {"type": "s-string", "size": -1},
7 "message":
8 {"type": "s-string", "size": -1}
9 }}}

Figure 4.19.: Simplified entry of the gadget library that defines the parameters of an mimc hash
computation. The algorithm_type is set to cryptographic commitments and the
algorithm_id is the keyword "mimc". Parameters of arbitrary size are indicated
with a size=-1. © 2024 IEEE

Gadget Library

The gadget library abstracts security algorithms to public and private parameters and uniquely
defines algorithmic abstractions by grouping identifying names per algorithm under algorithm
types (cf. Figure 4.19). Notice that the zkGen transpiler requires an implementation of every
gadget in the DSL of the respective PET system. The gadget library currently supports different
abstractions, where

Cryptographic commitments depend on a commitment string as the public parameter and a
witness and a message as the private parameters (cf. Figure 4.19).

Encryption algorithms currently exist in two forms, where symmetric, asymmetric, and
the one-time-pad encryption algorithms depend on a plaintext and a key as the private
parameters and a ciphertext as the public parameter. Encryption algorithms in the counter
mode require additional public parameters with an initialization vector and a block index.

Digital signatures are represented via two private parameters with the message and the
signature value itself and a public key as the public parameter. In the context of anonymous
credential systems [54], [55], proving knowledge of signatures is combined with a statement
evaluation of the signed data.

Secure channels are constructed by the composition of an encryption gadget and a single
or multiple commitment gadgets. In the context of data provenance proofs [12], [56], [58],
ZKP circuits allow users to validate web traffic secured by TLS against a statement (e.g. bank
balance > 100$).

Compositions

The zkPolicy together with the gadget library allow the composition of multiple relations in
a single policy, where relations are linked together by constraints. For example, credential
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chaining as introduced in the work [55] can be achieved by using two relations r1, r2 with
arguments that refer to the respective credential values via the constraints:

1. "0:age->-0:number"

2. "1:age-<-1:number"

3. "0:age:p:a:commit_string-=-1:age:p:a:commit_string"

4. "0:age:p:a:witness-=-1:age:p:a:witness"

Here, the characters "p:a" shorten the "protection" and "algorithm" path keywords of the
zkPolicy language and the indices 0,1 refer to the relation indices. Credential chaining is used
to evaluate multiple credentials in a single proof verification.

4.4.2. zkGen Transpiler

The following subsections introduce the components and capabilities of the zkGen transpiler
as a command line toolkit.

Gadget Parser

Before a policy is parsed, the transpiler reads in the gadget library in form of a library.json file.
In the next stage, the transpiler iterates over all security algorithms of the gadget library and
searches for every gadget implementation. To successfully parse a gadget implementation,
gadgets must be written under certain rules. Independent of the DSL a gadget is written
in, zkGen relies on specific comments to facilitate the gadget parsing. Since gadget imple-
mentations can grow into many files and folders, a typical comment location is before the
beginning and end of a circuit definition. If the gadget exists as a module, then comments
must indicate the module name to enable seamless imports of other gadgets.

Policy Parser

The policy parser reads in policies as JavaScript Object Notation (JSON) files and iterates over
the relation arguments to identify a list of protection algorithms per argument. The sequence of
protection algorithms is arranged by the constraint interpreter and used to identify gadget
implementations for the composition of a circuit model. If an argument is of type string, the
policy parser extends the list of protection algorithms at an argument with an extra gadget
that converts the input argument to an aggregated integer representation. We present the
string-to-integer conversion logic in the Formula 4.2, where the function ascii(stri) returns
the American Standard Code for Information Interchange (ASCII) number of a string character
and len(str) indicates the length of the string str.

aaggr =
len(str)

∑
i=0

10i · (48− ascii(strlen(str)−i)) (4.2)
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In the next stage, the parser module reads in and shares the list of constraints with the
constraint interpreter module.

Constraint Interpreter

The constraint interpreter processes the list of protection algorithms and constraints and creates
data attributes for the template engine. By iterating over the lists of the policy parser, the
constraint interpreter removes duplicate references of the same security algorithm such that
the circuit template instantiates every required security algorithm once. Any constraint
duplicates per argument are removed as well. Next, the constraint interpreter builds a list of
data attributes to encode the string-to-integer conversion per input argument. The second
list of data attributes is used to instantiate and sequentially apply protection algorithms to
arguments. The last list of data attributes encodes constraint checks between public and
private arguments. The constraint interpreter throws errors if private arguments potentially
leak information (e.g. equality check of private argument against public argument).

Circuit Models & Template Engine

The output of the transpiler is generated based on a circuit model which zkGen maintains
via a template engine. To start the composition of the circuit model, zkGen uses the tem-
plate engine to add all string-to-integer conversion gadgets per input argument. Next, the
required protection algorithms per argument augment the circuit model. To add the protection
algorithms to the circuit model, zkGen relies on the parsed gadget implementations and the
second list of data attributes of the constraint interpreter. If a security algorithm is called
multiple times, then the circuit model resets all initialization variables of the algorithm. Last,
the template engine adds individual constraints per argument to the circuit model.

In the end, zkGen generates circuits by executing the template engine on a circuit model.
The outputs of the template engine are strings which are stored in unique output folders.
Before a string is stored, zkGen determines the filename extension of output files based on the
DSL the circuit is written in. The zkGen transpiler supports the generation of testing suites.
However, to generate a test, the values of private and public arguments must be provided
in a test configuration. The execution of a generated test suite depends on an installation of
the desired ZKP system. If the ZKP system is installed, zkGen supports the generation of
blockchain code (e.g. Solidity) that verifies the generated circuit.

4.4.3. Evaluation & Discussion

The evaluation summarizes the transpilation results and compares zkGen against related
works.
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Table 4.5.: zkGen transpiler benchmarks. © 2024 IEEE
zkPolicy LOC policy LOC circuit Transpile Time

TLS 1.3 commit 22 975 2.38 ms
Age commit 20 85 1.70 ms

Transpilation Results

Our implementation19 of zkGen relies on the text/template package as the template engine and
uses the gnark ZKP framework [98] to (i) generate the ZKP verification code in Solidity and to
(ii) compute, verify, and test ZKPs. The zkPolicy language reduces the description complexity
of a policy-compliant ZKP circuit with regard to Lines of Code (LOC). Further, our toolkit
achieves transpile times in the range of milliseconds (cf. Table 4.5).

Related Works

The work zkDocs [145] introduces a transpiler toolkit to generate customizable privacy
documents based on readable JSON schemas. Schemas of zkDocs let users define lists of fields,
constraints, and trusted institutions, where fields are protected by commitments and asserted
against defined constraints. Every constraint follows the syntax

< fA><SUB/ADD>< fB><LT/GT><const/ fComp> (4.3)

with fields f , the subtract and addition operators as SUB, ADD, and the comparison con-
straints larger than or greater then as LT, GT. The list of trusted institutions is used as an
access control list to protect attestations on commitments. The generated circuit computes a
fixed commitment check for each schema field and adds constraints, as additional assertions,
on fields. In contrast to zkDocs, the zkGen can generate circuits with multiple distinct security
algorithms and introduces a flexible zkPolicy language with enhanced expressiveness.

The work DataCapsule [146] introduces a flexible policy language called PrivPolicy with
complete expressiveness. PrivPolicy extends the Legalease policy language [147] by using
residual policies to describe the minimum and maximum privacy restrictions of processed
data. With residual policies, PrivPolicy is applicable to programs which protect information
leakage of private data processing through the concept of differential privacy [148]. In
contrast to zkGen, DataCapsule statically analyzes programs to guarantee policy-compliant
data processing but does not generate policy-compliant programs. However, since ZKP
circuits do not support differential privacy [89], we deem DataCapsule as an interesting related
work to investigate if differential privacy compliance could be added to the generation of
ZKP circuits.

19https://github.com/jplaui/zkGen
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Limitations & Future Work

The first limitation of the zkGen toolkit is that it supports the generation of ZKP circuits
only. With MPC or HE as other PETs, we deem the generation compliant MPC or HE circuits
as future work. Secondly, as the zkPolicy language lacks a formal definition and is limited
to a specific PET domain, we see the formal definition of the zkPolicy language and the
definition of an domain-independent PET policy language as future work. The future goal of
formalizing the zkPolicy language is to attribute generated PET circuits with sound privacy
guarantees. Integrating tools to formally verify generated circuits is another direction as
future work.
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Our final discussion delivers answers to our initially defined research questions of Chapter 1.
Based on the state of progress achieved in this work, we summarize interesting directions of
future research and provide an outlook on how our proof of concepts and contributions help
the research community and industry. Then, we end our work with concluding remarks.

5.1. Answering Research Questions

In the following, we restate our research questions and answer how and to which degree our
contributions solve the research questions.

Research Question 1: How can we ensure self-determined protection and transparency of
digital data during the creation and interaction of online accounts?

As an important contribution, our first systematization [84] defines the level and notion
of data sovereignty which can be build with today’s cryptography. As such, we provide
a conceptual definition of self-determined protection and transparency of digital data. At
this point, it remains unclear how the concepts apply to existing online infrastructures and
deployments.

In our work Portal [82], we construct a time-bound and replay-resistant ZKP verification at
smart contracts. On top, we present a modern identity system with enhanced privacy and
control. Portal respects our initially defined principles of data sovereignty and data privacy in
the context of identifier and data administration. In Portal, users have the responsibility and
control to manage, verify, and present data through the public blockchain while preserving
data privacy. If Portal users present data at the Portal plugin, then the verifier can choose
between inspecting past validations of user data or request a live verification of user data.
During the Portal SSO, users are less susceptible to a potential tracking compared to traditional
SSO solutions. If users switch wallets for every live verification, users cannot be tracked at all.
Portal serves as the first SSO alternative with conventional usability that gives users a choice
to pick enhanced control and privacy during authentication at small costs.

With A-PoA [83], privacy-preserving certification ecosystems gain the ability to anony-
mously authorize parties to issue credentials according to a credential schema. Our con-
struction uses the RSA-accumulator to authorize credential issuers and relies on the privacy-
preserving NI-ZKPoKE protocol to prove the accumulator membership. Our solution enables
the resource-efficient and privacy-preserving membership authentication with little communi-
cation overhead. Based on our work, privacy-preserving, secure, and verifiable hierarchies or
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relationships between authorities can be added to the sovereign, VC-compatible ecosystem.
To summarize and to address our first research question, our contributions define the

theory and practice to bootstrap a system with self-determined protection of digital data.
Transparency is balanced through the use of advanced ZKP technology. Portal accounts
achieve a strong notion of data sovereignty, are cost-efficient and accountable. Our work
A-PoA enhances privacy and security for a verifiable but private creation of trustworthy
online accounts that issue attestations. Both contributions remain compatible with the W3C’s
standardization activities for sovereign applications in a DID and VC-based ecosystem. All
things considered, our first contributions show how a system of sovereign accounts maximizes
data privacy during online interactions.

Research Question 2: How can we practically return the sovereignty of custodial data back
to devices and users?

With the second systematization, we investigate state-of-the-art approaches to verify the
provenance of data. We perform a complexity analysis of TLS oracles on a function level to
identify major limitations which influence the practicality of existing approaches. We identify
that for MITM-secure oracles, the secure computation overhead concerning bandwidth
requirements impacts the deployment of TLS oracles in constrained environments. Further, we
notice that the efficiency of proof computations during the challenge phase yields performance
benchmarks in the range of minutes, which impacts a practical user experience of the TLS
oracle client side.

To address the identified bottlenecks, our work Janus [58] reconsiders the selection of secure
computation techniques in TLS oracles by putting an emphasis on the asymmetric privacy
setting and the conditions found in TLS 1.3. Concerning the asymmetric privacy setting, we
show that a HVZK proof system can be deployed if the proving party performs a unilateral
validation check of the verifier. Concerning TLS 1.3 in the 1-RTT mode, we show that the
authenticity of SHTS can lower algorithmic security requirements in the garble-then-prove
paradigm. The outcomes of Janus improve the efficiency of ZKP computations and improve
E2E benchmarks.

In our work Origo [97], we introduce a new type of oracle which does not rely on secure
2PC. We show that Origo achieves the best performance benchmarks in the TLS handshake
phase while adding a negligible overhead in the TLS record phase. Origo lacks support for
verifying larger data sizes which the Janus contribution solves. Thus, we conclude that by
merging our findings, TLS oracles become verify efficient with respect to all TLS phases.

To summarize and to answer our second research questions, we find that a tailored interplay
between security assumptions, adapted PET technologies, and protocol-specific conditions
leads to substantial improvements for protocols which reclaim ownership of digital data. Our
results significantly enhance state-of-the-art approaches and advance the sovereignty over
shared, kilobyte-sized digital assets. Our insight that, in an asymmetric privacy, proof systems
can be reduced to a HVZK setting with malicious verifiers is of independent theoretical
interest for the research community. Now, researchers can investigate if and how protocols
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can be transferred into an asymmetric privacy setting in order to benefit from efficient HVZK
proofs.

Research Question 3: How can we mitigate unconscious sharing and processing of custo-
dial data through user-driven policies?

Via our systematization of data sovereignty, we notice that preventing the unconscious
sharing and processing of data is only possible if the data remains protected at all times.
However, the level of protection remains configurable and must remain in the hands of the
device or the user. The extend of data protection is defined over PET technologies and we
conclude that the access to policy-driven PET technologies becomes inevitable.

As such, with our contribution zkGen, we automate the policy-compliant generation of
computational privacy via a transpiler architecture. Instead of manually configuring computa-
tional assertions with regard to a policy, we introduce a new policy language to describe and
connect private computation variables to policy statements. The policy language delivers a
concise description of compliant and private computation circuits with a fraction of code lines
compared to constraint-based circuit descriptions. Together with a data sovereign system (e.g.
our contribution Portal) or combined with sovereign protocols to reclaim digital ownership
(e.g. our contributions Janus), zkGen enables a policy-driven level of data sovereignty.

To answer our third research question, we can say that the unconscious sharing and
processing of digital data is mitigated if devices control every operation on data through
policy-driven technologies. It must hold that custodial data operations remain verifiable such
that a policy-governed execution can be guaranteed. An example deployment of policy-driven
applications can be achieved via an accountable system (e.g. Portal), where every execution
or sharing of data yields a transaction that can be checked against the policy.

5.2. Outlook & Future Work

This thesis proposes solutions for an independent and sovereign management of data and
identifiers. Additionally, this work shows how devices reclaim ownership of shared data
which resides at centralized services. At this stage, our work does not investigate how data
can be shared and processed responsibly. We neither define what constitutes mediating
practices with sufficient accountability and privacy. Hence, this outlook discusses emerging
challenges of mediated but sovereign data sharing and processing. At the same time, we
summarize future work ideas which could enhance the verification of content provenance
even further.

Sovereignty for Mediated Data Administration

The challenge of mediated sovereignty is the enforcement of a verifiable and accountable
transaction for every mediated action. For example, concerning data sharing, a device must
be able to resolve the access privilege and time when a data consumer obtains access to data.
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For data with stronger protection requirements, a device must be able to identify, audit, and,
under certain circumstances, punish the computing party as well as the data consumer.

Based on our systematization of data sovereignty, a challenge of the future is the efficient
integration of secret management committees into decentralized public infrastructures [84],
[88]. The functionality of secret management in combination with a transaction-based state
replication enables the principle of extractable witness encryption [149]–[151], where a message
is encrypted under a problem instance which the decryptor must know in order to access the
message. However, proactive secret management in dynamically changing networks has been
investigated but remains challenging to deploy at a larger scale [152].

In order to achieve policy-driven, private, and verifiable computation, the model of ex-
tractable witness encryption must be extended as follows. Two parties apply for the witness
extractor, where each party has a different task. The first party, the compute node, must
access the data, perform a computation, and attest to the policy-compliant execution of a
function. The data consumer must be able to fetch the result from the compute node once
the execution is finalized. The abstraction of policy-driven computation is currently not
covered by the model of extractable witness encryption and poses an interesting direction of
theoretical future research.

Data Provenance for Production Systems

In the field of data provenance protocols, we identify two main problems as promising future
work directions. The first problem concerns a feasibility analysis of commitment attacks in
the context of data provenance protocols. Commitment attacks, such as the message franking
attack, allow an adversary to find a second key message pair which encrypts to the same
ciphertext and authentication tag as another key message pair [126]. When performing
the attack, the adversary typically finds a second message composed of garbage characters.
However, in TLS oracles, the attacker must be able to determine one or more characters in
order to generate a convincing proof for a statement. For instance, if the adversary wants
to obtain an TLS data attestation on a false claim (e.g. bank balance > 10.000), then the
adversary must be capable of generating a sequence of at least 5 digits in the franked message.
An analysis on the feasibility of such an attack has not been done yet. If such an attack is
difficult, then the Origo and Janus TLS oracles could be further optimized by removing the
key derivation parts of the ZKP circuits.

Another topic of future research is the censorship resistance of TLS oracles. Even though
current approaches claim to achieve strong censorship resistance (e.g. TLS oracles in the
notary mode [11], [12]), server-side CORS policies could restrict client from fetching external
resources. At the same time, the proxy mode is susceptible to censorship based on IP address
analysis. Finding strong guarantees for censorship resistance is a topic that might compromise
the technical applicability of data provenance protocols in the future.
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5.3. Concluding Remarks

In response to continuing activities of digital legislation on data protection, we investigate
and advance technologies which empower a sovereign and privacy-preserving administration
of digital data.

To do so, this work systematizes the notion of digital sovereignty which can be constructed
today. Based on our insights, we propose two important concepts for self-determined
identity and privacy-preserving management of credentials, which comply with current
standardization activities of the W3C. Additionally, this thesis systematizes approaches to
reclaim control over shared digital data which resides at external storage locations. This
analysis yields important insights and leads to two core contributions which improve the
efficiency of verifying the provenance of data protected by secure channels. To enable the
policy-driven processing of data through privacy-enhancing technologies (PETs), this work
proposes a transpiler toolkit for an automated generation of secure computation building
blocks. The contributions of this thesis can be used in conjunction with each other in order to
amplify the notion of sovereignty in the system. We attribute our contributions with practical
implementations and open source our building blocks to the public, to academia and the
research community, and to the industry.

In summary, this work proposes sovereign online functionalities which serve as independent
components to build privacy-preserving and data sovereign applications. The concepts and
findings identified in this work remain applicable even if PETs continue to improve in the
future.
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A. Security Analysis

This chapter groups the security proofs of our works Portal [82], A-PoA [83], and Janus [58].

A.1. Portal Security Proof

The security analysis shows that the time-bound ZKP verification at smart contracts is resistant
against replay attack under the following theat model:

Theorem 1. If a party p1 with access to

• a smart contract CC1

• a secure proof system Ππ

• a secure signature scheme Πσ

• a secure hash function ΠH

performs the sequence of computations

1. p1 compiles and signs a transaction tx1 with Πσ.Sign

2. p1 calls CC1 .sample with tx1 such that CC1 generates the prevrandao randomness r using
ΠH.Hash and stores m[Wp1

addr]r||”-0” at timestamp t1

3. p1 fetches r from m[Wp1
addr]

4. p1 computes π=Ππ.Prove(ccsC1 ,w,pk)

5. p1 compiles and signs a transaction tx2 with Πσ.Sign, where π ∈ tx2.dpl

6. p1 calls CC1 .verify with tx2 and CC1 sets m[Wp1
addr]r||”-1” at timestamp t2 > t1

under the assumptions that

• CC1 runs on a blockchain which guarantees liveness, consistency, safety

we say that the proof π is resistant against replay attacks performed by a malicious PPT adversary
such that π ∈ tx2’ is never accepted by CC1 . And, we say that computing π is bound by the time t1

and cannot be accepted after t2.
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Proof 1. At time t1, the adversary A cannot change tx1 of p1 as unforgeability of transaction
signatures holds. But, A is capable of registering the same nonce of p1 twice at CC1 with tx1’.
CC1 maps the nonce of A at the address m[WAaddr]. At time t > t1, A uses the blockchain logs
to access tx2 of p1 and, with that, π. If A replays π in a transaction tx2’ and calls CC1 .verify,
then the verification of circuit C1 fails because of the following issue. The proof π has been
computed with the address m[Waddr] as private input and CC1 asserts that π is verified against
the owner of tx2. A has signed tx2’ such that CC1 asserts π with the public input WAaddr taken
from tx2’, which fails.

Further, A tries to replay a previously accepted proof πA (sampled and proven with txA1
and txA2 ). At time t > t1, t2, A cannot replay πA because, even though a reoccurring nonce
is negligible (collision resistance of PoS randomness), CC1 prevents overwriting an existing
map entry at m[WAaddr] if a nonce has already been set. Thus, our scheme is replay-resistant
and time-bound as π can only be computed at t2 after randomness has been sampled with tx1

at time t1 < t2.

A.2. A-PoA Security Proofs

The security analysis focuses on protocol integrity and accumulator element confidentiality.
The analysis of all parameters references the definitions under use and proves the respective
security assumption that apply to the parameters.

Theorem 2. Suppose authenticated encryption of messages throughout the communication protocols
holds, then the authentication scheme introduced above is secure against A1 intending to eavesdrop
and modify or decrypt messages m.

Proof Supposing an adversary B that is able to provide A1 with the private keys (through
guessing or collision) associated with the DIDs used during message exchange contradicts
the security assumptions of authenticated encryption. Keys used in authenticated encryption
are based on asymmetric cryptography which relies on e.g. the strong RSA assumption
(introduced below).

Definition 1. (Strong RSA assumption in generic groups of unknown order [45]) There is no
probabilistic polynomial-time algorithm P that outputs w and an odd prime x such that gx ≡
u (mod n), except with negligible probability:

PR

[
wx ≡ g : G?

R←− Gen(λ), g R←− G?

w, x ∈ G? ×Z←− A2(G?, g)

]
< negl(λ)

Theorem 3. Under the strong RSA assumption, the above mentioned RSA accumulator used in our
scheme is secure against A2 and forging of membership.

Proof In order to prove security against adversary A2, suppose there exists an adversary
B that is able to find a collision, hence obtaining {x1, x2, ..., xn, x′, a′} such that (a′)x′ =

gx1,...,xn (mod n). A2 is given access to all public values initiated in the generation phase.
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Leveraging B, A2 can break the RSA assumption as described in [43]. Let x = x′ and
r = x1, ..., xn. Compute α, β ∈ Z as Bezout coefficients for α · r + β · x′ = 1. Set w = (a′)αgβ

satisfying wx ≡ g. This indicates that if a value xi is once revoked from the accumulator, the
entity authorized before is unable to efficiently obtain membership without authentication.

Theorem 4. Our scheme is secure against A3, if the one-time interaction between P and V can be
simulated through an efficient simulator S and the Fiat-Shamir heuristic applies.

Proof (Sketch). In order to prove security against A3, we rely on the simulator introduced
by Boneh et al. in [45]. It is argued that the GenProof function can be efficiently simulated
by S , outputting {z′, Q′g, Q′wx

, r′x, r′ρ} which is statistically indistinguishable from the real
protocol/transcript execution {z, Qg, Qwx , rx, rρ}. Hence, transcript Tsim generated through
S is indistinguishable from Treal, satisfying the HVZK property for a proof of knowledge as
described in Sec. C.1. Note that the NI-ZKPoKE is general zero-knowledge in the random
oracle through the Fiat-Shamir heuristic. The reason for this is the replacement of the
challenge with a hash which prevents A3 from guessing the challenge in advance.

A.3. Janus Security Proofs

The security analysis concerns the deployment of the HVZK proof system and the unilateral
validation in the asymmetric privacy setting. Further, we show that the Janus protocol is
secure against malicious adversaries during the mutual authentication of the SHTS parameter.
The security analysis relies on our threat and system model (cf. Section 4.2.1) and uses our
formalized cryptographic building blocks (cf. Sections 2.2.2).

A.3.1. Construction 1

The first construction creates a maliciously secure evaluation of the HVZK proof system in the
asymmetric privacy setting. The proof system leverages semi-honest 2PC based on boolean
garbled circuit [70] and is combined with a unilateral validation phase. To show the security
of the construction, we first define the security guarantees of the asymmetric privacy setting
and conclude that the unilateral validation protocol patches remaining vulnerabilities.

Theorem 5. If three parties p0, p1, and p2 with access to

• a three-party TLS handshake protocol Π3PHS

• a secure commitment scheme Πcom

• a secret sharing scheme Πss with p0 as the trusted dealer

• a secure channel sc0-1 between p0 and p1

• a secure channel sc1-2 between p1 and p2

• a secure channel sc0-2 between p0 and p2

122



A. Security Analysis

• a maliciously secure 2PC scheme Π2PC between p1 and p2

perform the sequence of computations

1. p0 calls [r1, r2]= Πss.Share(r), with r $← R(λ)

2. p0 shares r1 using sc0−1 and r2 using sc0−2

3. either p0 calls c=Πcom.Commit(m, r) with bit strings m, c and shares m, c using sc0−1 and c
using sc0−2, or

Π2PC evaluates Πcom.Commit(m, r1+r2) where p1 has m

4. p2 shares r2 using sc1−2

under the assumptions that

• the TLS 3PHS implements Πss and the sequence of computations (1) and (2)

• p0 discards calling Πcom.Open

• p0 cannot be compromised by the adversary

• p1 never discloses the secret share r1

• the security of the schemes Π2PC, Π3PHS, etc. holds (e.g. 3PHS relies on the discrete logarithm

hardness to find a from aG, with random a $← EC(Fp) and base point G ∈ EC(Fp))

we say that asymmetric privacy holds between p1 and p2 such that only p1 can call Πcom.Open.

Proof 1.1: The security of the 3PHS keeps secret shares confidential. Without access to
the initially shared secret shares, the adversary A cannot compute the commitment string
c. Further, the security of the commitment scheme prevents the adversary from finding a
collision of c. When computing the commitment through a maliciously secure 2PC system,
then A cannot learn any information on the inputs of the counterparty. Since all parties use
secure channels to communicate parameters, A learns nothing of communicated parameters.
Thus, A cannot find any m or reconstruct r which prevents A from calling Πcom.Open.

Theorem 6. If two parties p1 and p2 with access to

• a HVZK proof system ΠHVZK using a semi-honest 2PC system Πsh2PC

• two secure commitment scheme Π1
com, Π2

com

• an asymmetric privacy setting Πasym using Π2
com

• a 2PC circuit Copen implementing Π2
com.Open

• a secure channel sc1-2 between p1 and p2

• a unilateral validation Πuv using Π2
com
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perform the sequence of computations

1. ΠHVZK.Setup: p2 calls p=Πsh2PC.Garble(Copen)

2. ΠHVZK.Setup: p2 shares {p \ Tk−d} using sc1-2

3. ΠHVZK.Prove: p1 calls k=Πsh2PC.Evaluate

4. Πuv: p1 calls c=Π1
com.Commit(k,r) with r $← R(λ)

5. Πuv: p1 shares c using sc1-2

6. Πuv: p2 shares {p} using sc1-2

7. Πuv: p1 recomputes Copen to verify {p}

8. Πuv: p1 shares r using sc1-2

9. ΠHVZK.Verify: p2 calls Π1
com.Open(c,r)

under the assumptions that

• in Πsh2PC p1 acts as the evaluator and p2 acts as the garbler

• Πasym gives p1 access to Π2
com.Commit

we say that after running Πasym, composition of ΠHVZK and Πuv as Πcomp establishes security against
malicious adversaries.

Proof 1.2: The security of Πsh2PC allows the adversary A to maliciously garble the circuit
Copen. However, if A receives c upon disclosure of {p \ Tk−d}, the hiding property of Πcom

prevents A from learning any secret information on the 2PC inputs of p1. Further, p1 detects
a cheating A at the sequence number (7) and aborts the protocol before disclosing r to A.
Further, Πsh2PC prevents A from predicting a k that corresponds to a 1. If A uses Π1

com to
commit garbage, then p2 aborts at the sequence number (9).

Notice. We define Πcomp(Πsh2PC=arg1, Copen=arg2, Π2
com=arg3) as an construction that takes

as input a semi-honest 2PC system which is executed in the context of the HVZK proof
system. The HVZK proof system evaluates a 2PC circuit as the second argument. The third
argument is a commitment scheme which establishes the asymmetric privacy setting.

A.3.2. Construction 2

The second construction provides the verifier with a secure authenticity verification of the TLS
1.3 SHTS secret in a setting with malicious adversaries. To do so, the construction combines
the effects of the TLS 1.3 1-RTT mode with the TLS 3PHS and a secure 2PC computation of the
session secret SHTS. This combination introduces an unsolvable challenge to the adversary
which prevents the adversary from forging the authenticity of SHTS.

Theorem 7. If three parties p0, p1, and p2 with access to
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• a secure channel sc0-1 between p0 and p1

• a secure channel sc0-2 between p0 and p2

• a three-party TLS handshake protocol Π3PHS

• a secure commitment scheme Πcom

• a maliciously secure 2PC scheme Π2PC between p1 and p2

• a secret sharing scheme Πss with p0 as the trusted dealer

• a secure AEAD scheme ΠAEAD

• a secure signature scheme Πσ where p0 maintains the private key sk

perform the sequence of computations

1. p0 calls [r1, r2]= Πss.Share(r), with r $← R(λ)

2. p0 shares r1 using sc0−1 and r2 using sc0−2

3. p2 samples t $← R(λ) and discloses t

4. p0 calls c=Πcom.Commit(t, r), with bit strings c

5. p0 calls σ=Πσ.Sign(sk, t)

6. p0 calls s=ΠAEAD.Seal(c,σ) and discloses s

7. Π2PC evaluates Πcom.Commit(t, r1+r2)

8. p2 calls σ=ΠAEAD.Open(c,s) and checks Πσ.Verify(pk,t, σ)

under the assumptions that

• the TLS 3PHS implements Πss and the sequence of computations (1) and (2)

• p0 cannot be compromised by the adversary

• pk, and t are public

• p0 never discloses sk

• p2 only performs step (7) if a s has been captured

we say that an PPT adversary has negligible probability with respect to λ in forging c such that p2

accepts step (8) and that c is authentic.
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Proof 2.1: Again, Π3PHS and Π2PC keep the secret shares confidential. Thus, the adversary
A can only access c at step (7). With c, the adversary can forge a new transcript s but cannot
change a s which has already been captured by p2. Thus, the challenge for A is to predict a
valid c’ at a point in time where c remains hidden. Predicting a correct c requires A either
to find a collision for c which the secure commitment prevents. Or, A correctly guesses the
secret share r2 which evaluates to a correct c before a s is captured by p2. In the case of a
correct guess, A can replay a σ’ on previous t’ and encrypt σ’ under the right c such that p2

accepts. However, guessing r2 or r1 has negligible probability in λ.

A.3.3. Construction 3

The third construction reduces the security requirements of cryptographic constructions
in the garble-then-prove paradigm [117]. Specifically, we show that the existence of a
computation trace to an authenticated commitment string to allows to replace a semi-honest
2PC system based on authenticated garbling with a semi-honest 2PC system that does not
require authenticated garbling. Our garble-then-prove paradigm leverages the efficient proof
system construction in the asymmetric privacy setting in the prove phase. Further it requires
commitment authenticity through SHTS. Thus, for this construction, we use our definitions
of Πcomp and Πauth (cf. proof 1.1, 1.2, and 2.1 of the Appendix A.3).

Theorem 8. If two parties p1 and p2 with access to

• a garble-then-prove scheme Πg-t-p using two semi-honest 2PC system Π1
sh2PC , Π2

sh2PC

• a composition scheme Πcomp

• a secure commitment scheme Πcom

• an authenticated commitment scheme Πauth using Πcom

• a 2PC circuit Copen implementing Πcom.Open

• a 2PC circuit Ckdc+record implementing the TLS 1.3 specification

• a 2PC circuit Cϕ implementing a data compliance check against a statement ϕ

perform the sequence of computations

1. Πg-t-p.Garble: p1 calls Π1
sh2PC.Garble(Ckdc+record)

2. Πg-t-p.Garble: p2 calls Π1
sh2PC.Evaluate(Ckdc+record)

3. Πg-t-p.Prove: Πcomp(Π2
sh2PC , (Ckdc+record + Copen + Cϕ) , Πcom)

under the assumptions that

• in Π1
sh2PC p2 acts as the evaluator and p1 acts as the garbler

• in Π2
sh2PC p1 acts as the evaluator and p2 acts as the garbler
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• Πauth initially authenticates Πcom

we say that malicious security holds for the garble-then-prove paradigm with a semi-honest 2PC system
in the garble phase.

Proof 3.1: The adversary A is able to maliciously garble Π1
sh2PC and obtain secrets from

p2. However, due to the asymmetric privacy setting established during the prove phase, A
learns nothing beyond what A would have learned during the prove phase. And, a malicious
garbling of A is recorded at p2 because p2 obtains all outputs of 2PC circuits executed in the
garble phase. Thus, once the construction proceeds to step (3), and A has cheated, p2 is able
to detect it in step (9) of the Πcomp construction and can abort the protocol. This conditional
abort option prevents A from obtaining a false provenance attestation of TLS data.
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B. Extended Benchmarks

This chapter outlines missing details of how we collect and compute evaluation tables. The
extended benchmarks concern PET computations for the contributions Janus and Origo.

B.1. Janus Extra Benchmarks

The following subsection provides additional benchmarks and display the entire E2E con-
structions of TLS oracles with Janus optimizations.

B.1.1. Microbenchmarks of 2PC Circuits

We present micro benchmarks of secure computation building blocks in the Table B.1. This
table compares circuit complexities, execution times, and communication overhead of 2PC
circuits, where execution times and communication overhead is further divided into offline
and online benchmarks. The 2PC circuits CXHTS and Ck,iv derive session secrets in milliseconds
and compute CBs via the circuit CX

CB2+
for a 2 kB record in 164.9 milliseconds. An interesting

fact to notice is that the AEAD tag circuit Ctag is efficient for small request sizes and scales
sufficiently but not ideally for larger request sizes. The overhead in the circuit Ctag is
introduced by the algebraic structure of the Galois field polynomials in GF(2128), which, as an
algebraic structure, is in conflict with the binary representation of computation in boolean
GCs. The related works [11], [119] propose a scalable OT-based computation of the AEAD
tag, which we consider as future work to improve our implementation.

Concerning data opening times, we can see that the transparent mode with the circuit
CtpOpen is more efficient compared to the privacy-preserving mode with the circuit CzkOpen. This
behavior is expected because, the 2PC circuit of the transparent mode does not include the
ciphertext, SHTS, and CBtag verification inside the circuit (cf. Figure 4.8). As a consequence,
the data communicated in the OT scheme of the transparent mode is about half the size of the
privacy-preserving mode. The effect is further visible in the online communication cost, where
the transparent mode communicates 3x less data than the privacy-preserving opening mode. As
another reference benchmark (cf. fϕ of the last row in Table B.1), we evaluate the verification
of a confidential document hash H( f ) in the circuit CzkOpen. To do so, we set the function

fϕ=H( f ) ?
= H(pt) to a hash check on the 2 kB response data, with H=SHA256. Concerning

online execution times, the extra hash evaluation yields a negligible overhead for the client
but increases the communication overhead by a factor of 1.3x.
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ClientVerifier as ProxyServer

Three-party Handshake (3PHS)
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Figure B.1.: End-to-end protocol of a TLS 1.2 oracle running the first Janus optimization.
Boxes crossing two vertical lines indicate 2PC protocols.

B.1.2. Complete E2E Janus Protocol

To simplify the reproduction of this work, we provide complete E2E descriptions of TLS
oracles integrating the Janus optimizations. We consider a simple scenario where a single
request and response is exchanged during the TLS session.

Concerning TLS 1.2, we describe a TLS oracle configured with TLS MtE (e.g. CBC-HMAC).
This configuration performs best due to the constant-size 2PC circuits of the record phase
(cf. Section 4.2.2). We depict the full E2E protocol of a TLS 1.2 oracle using the first Janus
contribution in Figure B.1. TLS 1.3 oracles are configured with AEAD cipher suites. We
depict a full E2E protocol of a TLS 1.3 oracle using both Janus optimizations in Figure B.2.
Notice that for the computation of CzkOpen, the key shares kv, kx indicate the secrets s1, s2 of
the circuit (cf. Figure 4.8).

B.2. Origo Extra Benchmarks

Additional benchmarks of our work Origo show how ZKP sub circuits influence the overall
ZKP computation complexity.

B.2.1. Evaluation Details of End-to-end Computations.

We start by providing ZKP circuit benchmarks in Table B.2, where all provided values have
been generated with our publicly shared repository1. The table compares ZKP oracle circuits
as well as sub circuits and differentiates benchmarks into online and offline computation

1https://github.com/jplaui/gnark_lib
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ClientVerifier as ProxyServer
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Figure B.2.: End-to-end protocol of a TLS 1.3 oracle running both Janus optimizations. Boxes
crossing two vertical lines indicate 2PC protocols. Orange boxes belong to the
garble phase and the blue box indicates the prove phase.

and communication parameters. The separation is necessary to merge ZKP benchmarks
with 2PC benchmarks for system end-to-end evaluation results. With respect to computing
end-to-end benchmarks, we applied the following additional considerations. Execution times
are measured in seconds and we group the ZKP circuit compile function and the ZKP setup
function under offline execution times. Whereas prove and verify function calls count as
online executions as these functions are executed at the prover and verifier when computing
and verifying an oracle proof. Communication parameters are gained by deserializing gnark
data structures except for the public witness parameters. The public witness of the key
derivation circuit KDC are 32 byte variables hHS,opad, MSin, SATSin, and SATKin. The public
witness of the tag variable consists of two encrypted counter blocks of size 16 bytes and
the initialization vector with 12 bytes. The public input of the record circuit has a 32 byte
ciphertext and depends on five 64 bit integers which sum to a total of 40 bytes.
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Table B.1.: Secure computation benchmarks to implement the Janus optimizations. We allocate
values to offline/online execution and communication columns. Dashed lines indi-
cate which circuits belong to the handshake, record, and post-record phases. The
rows 1,2 use are maliciously-secure 2PC benchmarks averaged over 10 executions
using the framework emp-ag2pc. Other benchmarks have been collected with the
framework Go-based 2PC framework mpc.

2PC Circuit Constraints (x106) Execution Offline Execution Online Communication Offline Communication Online

SHA256 - 59.4 ms 10.09 ms 12.16 MB 13.184 kB
AES128 - 55.5 ms 2.8 ms 4.33 MB 6.8 kB
ECTF - - 212.96 ms - 1.861 kB
CXHTS 3.14 215.56 ms 144 ms 34 MB 110 kB

Ckm1 ,iv 10.34 723.96 ms 484.82 ms 108.08 MB 356 kB

C256 B
ECB2+

/ C2 kB
ECB2+

1.16 / 9.18 67.78 / 578.76 ms 67.6 / 164.9 ms 10.12 / 86.02 MB 116 / 566 kB

C256 B
tag / C2 kB

tag 4.04 / 29.01 285.98 ms / 2.42 s 492.24 ms / 3.78 s 52.06 / 378.02 MB 512 kB / 2 MB

C256 B q, 2 kB r
tpOpen 12.69 0.89 s 0.46 s 126.01 MB 583 kB

C256 B q, 2 kB r
zkOpen / fϕ 12.73 / 17.15 0.89 / 1.13 s 2.04 / 2.08 s 127.02 / 168.03 MB 2.13 / 2 MB

Table B.2.: ZKP benchmarks averaged over 10 executions using the framework gnark. We
classify benchmarks into offline and online execution and communication values
such that merging ZKP numbers with 2PC numbers for system end-to-end values
becomes feasible. We use the abbreviations Compiled Constraint System (CCS),
Prover Key (PK), and Verifier Key (VK), Public Witness (PW), and proof π, where
PK and VK together form the common reference string of the ZKP system.

Execution Offline Execution Online Communication Offline Communication Online

ZKP Circuit # Constraints (x103) Compile (s) Setup (s) Prove (s) Verify (s) CCS, SRS (MB) PK (MB) VK (KB) π (KB) PW (B)

Groth16 backend

KDC 322.4 0.9 11.12 0.48 0.001 35.3 47.8 4.93 0.128 128
Tag 285.8 1.28 9.17 0.6 0.001 106.6 40.1 2.37 0.128 44
Record 288.1 1.31 9.24 0.61 0.001 105.1 40.4 2.02 0.128 72
Commit 44.5 0.12 1.5 0.07 0.001 4.31 6.35 1.34 0.128 32
CommitRecord 332.7 1.37 10.37 0.61 0.001 113.56 44.73 3.04 0.128 104
CommitTagRecord 618.6 2.67 20.16 1.21 0.001 223.61 84.9 5.09 0.128 148
KDCTagRecord 896.4 3.43 25.35 1.21 0.001 255.93 111.68 8.16 0.128 244

Plonk backend

KDC 573.0 7.64 6.08 7.38 0.002 52.7, 33.5 327.1 0.54 0.552 128
Tag 551.9 7.65 6.14 7.46 0.002 61.5, 33.5 327.1 0.54 0.552 44
Record 556.5 7.83 6.16 7.67 0.002 61.9, 33.5 327.1 0.54 0.552 72
Commit 76.7 1.01 0.86 1.04 0.002 6.4, 4.1 40.8 0.54 0.552 32
CommitRecord 634.3 7.78 6.03 7.41 0.002 69.3, 33.5 327.1 0.54 0.552 104
CommitTagRecord 1186.2 15.69 12.36 14.95 0.002 131.7, 67.1 654.3 0.54 0.552 148
KDCTagRecord 1681.4 15.91 11.9 14.75 0.002 177.9, 67.1 654.3 0.54 0.552 244

131



C. Evolution of Zero-knowledge Proofs

During the composition of this thesis, the field of ZKPs evolved from dedicated proof systems
to systems capable of proving arbitrary statements. Since our work makes use of both
dedicated and general-purpose proof systems, this chapter outlines the evolution concisely.

C.1. Dedicated Zero-knowledge Proofs

In our work A-PoA, we rely on a dedicatred ZKP system with the ability to prove a fixed
computational relation, namely the discrete log of the RSA accumulator. In the following,
we highlight how dedicated proof systems function. Subsequently, we explain the dedicated
proof system used in our construction called A-PoA.

Proving Knowledge of the Schnorr Discrete Log

The PoK protocol for the discrete log problem of Schnorr et al [153], shown in Figure C.1,
is an example of an interactive protocol (also referred to as Σ-protocol) which leverages a
commitment scheme to let a prover P convince a verifier V. In a commitment scheme, P
sends a commitment value R = gr (commitment) to V without revealing the secret r. After
receiving a challenge from V (commitment challenge), at a later point in time, P sends a
seed value (commitment response), such as z = c · α + r to prove the factoring assumption of
the commitment which V verifies in Equation C.1 [154]. Values of U (basis of discrete log
relation) and g (basis to encrypt commitment) are drawn from a group G of prime numbers p
and shared between P and V.

A PoK allows a prover P to convince a verifier V that P knows the solution of a hard problem
without revealing the solution. We say that the conversation between P and V is a PoK of
relation R when the following properties hold: (1) Completeness, (2) Soundness, and (3)
Zero-knowledge [155].

Prover Verifier
α∈Zq (U,A=Uα)∈G

r←Zq
R=gr∈G−−−−→

c∈C←−− c← C = {1, . . . , 2λ} ⊆ Zq
z=c·α+r∈Z−−−−−−→ accept iff Uz = Ac · R

Figure C.1.: The Schnorr Proof of Knowledge protocol, as shown in [45].
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Completeness: Completeness means that P, knowing the solution, can successfully con-
vince V. Originally, completeness was solved iteratively through an interactive protocol
between P and V. Here, P answers a challenge of knowledge correctly multiple times to
convince V. From V’s perspective, if the likelihood L of answering a challenge correctly is
L ≤ 1

2 , the confidence of V increases if P knows/provides a convincing argument multiple
rounds.

Uz = gz = gc·α+r = gr · (gα)c = R · (Uα)c = R · Ac (C.1)

Soundness: Soundness means that P, not knowing a solution, will fail to convince V. The
typical way to prove soundness of a protocol is to leverage the concept of the knowledge
extractor. An extractor with the ability to extract secret knowledge from P convinces V of the
existence of a satisfying solution. In order to extract the unknown secret value from P, the
extractor is given rewind access to the actions of P. Such an ability can achieve two accepting
conversations for one given verification key, effectively enabling an adversary to break the
discrete-log assumption with non-negligible probability.

The important feature of the extractor concept is the assumption that V has access to a
property that it does not have under real circumstances. In order to extract the unknown
secret value from the P, the extractor is given rewind access to the P. Through this ability we
achieve two accepting conversations for one given verification key, effectively enabling an
adversary to break the discrete-log assumption.

Take, for example, the Schnorr protocol of Figure C.1 and the assumption that V is able to
receive two accepting conversations (R, c, z) and (R, c′, z′). The case that P sends the same R
twice to V does not happen in a real application of this protocol. The extractor model requires
such an assumption which allows V to extract the witness α from P with Equation C.2.

with Uz = Ac · R and Uz′ = Ac′ · R
=⇒ Uz−z′ = Ac−c′

=⇒ α =
z− z′

c− c′
= logg(U)

(C.2)

Figure C.1 summarizes this interaction which has the property of HVZK. HVZK means that
witness extraction is possible if the verifier leverages two accepting conversations. Here, the
verifier requests the same R twice and returns c and c′ in each round respectively with c ̸= c′.
Since c− c′ is invertible in Zq, the verifier is able to calculate Uz−z′ = Vc−c′ , U(z−z′)/(c−c′) = V,
and, as a result, α = (z− z′)/(c− c′).

HVZK: HVZK in a PoK scheme requires V to learn nothing but the validity of a convincing
assertion of P. From the perspective of V, this means that for the case of a true/valid assertion
of P, V does not learn anything from the interaction with P that V could have learned on
her own. To prove ZK, a concept of a Simulator is used to simulate the protocol psim between
P and V. Taking the definition of a valid transcript as the output of the interactive protocol
between V and P with a valid assertion, the Simulator produces a simulated transcript Tsim
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which can be compared to the transcript Treal of the real interactive protocol preal [156]. Note
that the transcripts are viewed from the perspective of V.

If the distributions of Tsim and Treal remain statistically indistinguishable, a computationally
unbounded adversary in form of V is not able to extract/learn any information by partic-
ipating in each of the protocols psim and preal [157]. The reason for this is that Tsim can be
modeled such that it does not contain any secret knowledge of P, enabling a statistically
indistinguishable simulation of the real protocol. Since Tsim is statistically almost identical to
Treal , Treal does not reveal any additional information. The calculation of Tsim of the protocol
of the discrete log problem is shown in Equation C.3.

Select z, c← Zq

Calculate α =
gz

Uc

Output Tsim = (α, c, z)

(C.3)

To achieve almost identical transcript distributions, note that c is almost uniform random and
α is almost independent of the conversation history [158] [159].

From the information theoretic perspective and with the definition of the distributions of the
transcript, it is possible to introduce the three different definitions of ZK. Perfect ZK implies
that the distributions of Tsim are exactly equal to Treal , whereas Statistical Zero-Knowledge
(SZK) requires the distributions to be statistically almost identical. SZK relies on the language
of promise problems where the problem of almost identical distributions can be reduced to
and expressed by Statistical Difference (SD) [157]. Computational ZK requires computational
indistinguishability of the distributions Tsim and Treal . This means that no efficient algorithm
is able to notice a difference of these almost identical distributions with a non-negligible
probability.

A caveat to the protocol of PoK of discrete log of Figure C.1 is that it is HVZK. HVZK
requires V to behave according to the protocol and allows a Simulator to model the actions of
V with deterministic behavior.

Zero-knowledge: Zero-knowledge provides robustness against a cheating verifier. The
work of Sahai et al. [160] proves that every HVZK protocol can be transformed into a general
SZK protocol with a cheating verifier. To do so, it is necessary to computationally bind the
challenge of the verifier to a commitment value before the verifier receives the commitment
of P [155]. This measure prevents the verifier to guess the distribution of the commitment of
P which, in the case of a correct guess, extracts knowledge of the subsequent transcript of the
protocol. Extracting knowledge throughout the protocol contradicts the original idea of ZK.
Malicious verifier resistance affects the Simulator concept which must adapt to the situation
by guessing the challenge of the verifier before the commitment computation of the verifier
[161].

Non-interactivity: Non-interactivity of the Schnorr protocol in Figure C.1 together with the
general ZK property can be achieved by leveraging the Fiat-Shamir heuristic [103]. To do so, it
is necessary to replace the random challenge c of V with a hash function computation of the
commitment value c = H(R), where R = gr. This calculation can be done by P which reduces
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zk.Prove(wx, x, at):

1. k, ρx, ρk
R←− [−B, B]; z = gxhρx

2. Ag = gkhρk ; Awx = wk
x

3. l ← Hprime(wx, at, z, Ag, Awx); c← H(l)
4. qx ← ⌊(k + c · x)/l⌋; qρ ← ⌊(ρk + c · ρx)/l⌋
5. rx ← (k + c · x) mod l; rρ ← (ρk + c · ρx) mod l
6. return: π ← {l, z, gqx hqρ , wqx

x , rx, rρ}
zk.Verify(wx, at, π):

1. {l, z, Qg, Qwx , rx, rρ} ← π; c = H(l)
2. Ag ← Ql

ggrx hrρ z−c; Aw ← Ql
wx

wrx
x a−c

t
3. Verify rx, rρ ∈ [l]; l = Hprime(wx, at, z, Ag, Aw)

4. return: {0, 1}

Figure C.2.: The NI-ZKPoKE zk.Prove and zk.Verify algorithms as defined in the work [45].

the communication overhead of the interactive protocol to a single round. The requirements
(uniform random distributed, statistical independence) of the challenge c apply to the hash
function in use.

The Simulator computation changes respectively. The computation stays the same as in
Equation C.3 except that an additional requirement of c = H(T) applies. The Fiat-Shamir
computation provides soundness under the random oracle model and its application in the
standard model only provides security for special protocols based on elliptic curves, factoring,
and quadratic residues [162].

Dedicated ZKP for A-PoA

The problem with the above described proof of discrete log is that it cannot be applied to the
cryptographic accumulator definition which we use in our work A-PoA. The reason is that the
Schnorr proof of discrete log works for generators U ∈ Gq of a finite cyclic group of prime

order q. However, the RSA accumulator used in A-PoA requires a generator gacc
R←− Z∗n\{±1},

with n = p · q, p = 2 · p′ + 1, and q = 2 · q′ + 1, where p′ and q′ are Sophie Germain primes (p
such that 2p + 1 is prime). In order to find Sophie Germain primes, safe primes with bit size
k =512, 768, 1024, 2048, 4096 must be computed repeatedly, such that finding a random prime
p (k-1 bits) with 2p + 1 as another prime is possible (or repeatedly find a random k-bit prime
p, until (p-1)/2 is prime). The Miller-Rabin primality test can be used to find such primes
faster.

As a solution, the work [45] constructs a NI-ZKPoKE of discrete log in a group of unknown
order G? with security under the adaptive root problem (cf. Figure C.2). This ZKP can

be applied to the RSA accumulator at = (gacc)2 mod n, with gacc
R←− G?. Remember that

accumulator elements compute as x ∈ primes, with x ̸= p′, q′ and A ≤ x ≤ B, where A, B
can be chosen with arbitrary polynomial dependence (linear independence of polynomials,
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Extraction:

1. Extract x, ρ such that z = gx · hρ and gs1 · hs2 = Ag · zc

2. Set R← {} and sample s1, s2
R←− [0, 2λ]

3. Sample l R←− Primes(λ), c R←− [0, 2λ] and send s1, s2, l, c to A1

4. Get output Qg, Qu, r1, r2 from A0. If transcript is accepting (Ql
g · gr1 · hr2 = Ag · zc and Ql

u ·
ur1 = Au · wc), then update R← R ∪ {(r1, r2, l, c)}. Otherwise go to step 2.
5. Use CRT to compute s1 = r(i)1 mod l(i) and s2 = r(i)2 mod l(i), for each (r(i)1 , r(i)2 , l(i)) ∈ R.
If us1 = Au · wc then output s1, otherwise return to step 2.
6. Repeat for s′1, s′2, c′, so that x = ∆s1/∆c = (s1 − s′1)/(c − c′) and ρ = ∆s2/∆c = (s2 −
s′2)/(c− c′), with extraction based on us1 = Au · wc and us′1 = Au · wc′ , thus (ux)∆c = w∆c ⇒
ux = w.

Simulation:

1. c̃ R←− [0, 2λ], l̃ R←− Primes(λ)

2. z̃← hρ̃, ρ
R←− [B]

3. q̃x, q̃r
R←− [B]2

4. r̃x, r̃ρ ∈ [l]2

5. Q̃g ← gq̃x · hq̃ρ , Q̃u ← uq̃x

6. Ãg ← Q̃l
g · gr̃x · hr̃ρ · z−c̃, Ãu ← Q̃l

u · ur̃x · w−c̃

Figure C.3.: Extraction and simulation algorithms to show the soundness of the zero-
knowledge property of the NI-ZKPoKE construction of the work [45]. The
witness extraction depends on the Chinese Remainder Theorem (CRT).

arbitrary constant coefficients, distinct positive integers as grades), respecting the security
parameter λ, as long as 2 < A and B < A2. The generation of x ← Hprime(x′, λ) using Hprime

delivers collision resistant accumulator elements.
Completeness of the NI-ZKPoKE construction computes according to the equations C.4.

Ql
g · grx · hrρ = (gqx · hqρ)l · grx · hrρ = gqx ·l+rx · hqρ·l+rρ = gsx · hsρ

= gk+c·x · hρk+c·ρx = gk · hρk · gx·c · hρx ·c = Ag · zc

⇒ Ql
u · urx = (uqx)l · urx = uqx ·l+rx = usx = uk+c·x = uk · ux·c = Au · wc

(C.4)

The soundness and zero-knowledge properties hold according to the extraction and simulation
algorithms depicted in Figure C.3. In the simulation paradigm, statistical indistinguishability
holds between (z̃, Ãg, Ãu, c̃, l̃, Q̃g, Q̃w, r̃x, r̃ρ) and (z, Ag, Au, c, l, Qg, Qw, rx, rρ).

C.2. General-purpose Zero-knowledge Proof Systems

After the advent of dedicated proof systems, the advancements of ZKP technology led to the
invention of efficient, general-purpose proof systems [17]. General-purpose proof systems
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Figure C.4.: Sequence of building blocks for the construction of general-purpose ZKPs.

are capable of proving arbitrary computation logic and power the works Portal, Origo, and
zkGen. The following paragraphs introduce the main building blocks of general-purpose
proof systems.

Building Blocks

The construction of a proof system depends on the interplay of multiple compatible building
blocks.

Arithmetic Representations & Circuit Satisfiability: In practice, the computation logic
of general-purpose proof systems is created using a DSL [98], which can be translated to an
algebraic circuit (cf. Figure C.4). For the algebraic circuit, it must hold that a witness satisfies
the circuit logic. The witness has two parts, where the private witness is known by the
prover and the public part is known by the verifier. Due to the fact that the algebraic circuit
cannot be proven using cryptography, general-purpose proof systems translate the algebraic
representation of the computation over a constraint system (e.g. R1CS, AIR, Plonkish) into a
Quadratic Arithmetic Program (QAP).

Quadratic Arithmetic Program: QAPs are systems of equations over polynomials, which
encode the problem defined by the algebraic circuit into a representation which can be proven
using cryptography. The functions and parameters expressing the QAP can be encrypted
using functional commitment schemes and can be queried by the verifier according to an
Interactive Oracle Proof (IOP) model.

Functional Commitment Schemes: Functional commitment schemes are cryptographic
objects which allow the commitment to a vector of messages instead of committing to a single
message instance (cf. Section 2.2.2). Using functional commitments, committed polynomials
can be shared by the prover towards the verifier. For instance, to commit to a polynomial, the
commit function encrypts all coefficients of the polynomial. Popular functional commitment
schemes are of the type polynomial, multilinear, vector, or inner product. Popular mathe-
matical constructions of functional commitments rely on hash functions, bilinear groups (e.g.
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verifier can query prover's message

IP (Interactive Proof)

Interaction
message exchange

randomness
verifier is probabilistic

IOP (Interactive Oracle Proof)

Figure C.5.: Classification of information theoretic proofs based on the verifier capabilities.

KZG commitments), groups of unknown order, or elliptic curves. After the prover shares
commitments, the verifier has the opportunity to evaluate committed functions at selected

points (e.g. f (u) ?
= v). The powers of the verifier are defined via different models. For

instance, an interactive proof (IP) as depicted in Figure C.1 allows the verifier to randomly
select c and exchange messages with the prover. In contrast, a linear Probabilistic Checkable
Proof (PCP) is a vector of elements in a finite field on which the verifier can perform linear
operations. In other words, the response from the oracle (the prover) to a verifier query is a
linear function.

Compatible Interactive Oracle Proofs: Interactive oracle proofs (IOPs) are information
theoretic constructs which assume a verifier with oracle access, randomness, and interaction
capabilities (cf. Figure C.5). Interaction means that the verifier can exchange messages with
the prover. Randomness allows the verifier to behave probabilistic. Oracle access allows
the verifier to query the messages send by the prover. The functional commitment scheme
must support the capabilities defined by the verifier model. Queries by the verifier can target
individual points, polynomial evaluations (e.g. a polynomial zero test), tensor queries, linear
queries, or more. The minimization of the checks at the verifier boosts the performance
(efficient verifier complexity) of proof systems.

Types of Proof Systems & Key Properties

The freedom in combining the above defined building blocks leads to many different forms
of proof systems that exist today. In the following we highlight the most popular types of
proof systems and specify which ones we use in our contributions.

• zkSNARKs are zero-knowledge succinct non-interactive arguments of knowledge.
zkSNARKs are characterized by succinctness, which yields short proofs and efficient
verification times that behave sublinear with reagrds to the proving complexity. We use
zkSNARKs in our contributions Origo, Portal, and zkGen.

• zkSTARKs are scalable, transparent arguments of knowledge. The key characteristic of
STARKs is transparency which removes the requirement of a trusted setup assumption.
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• MPC-based ZKPs achieve efficient evaluations of non-algebraic statements. We use a
transparent MPC-based proof system in our work Janus.

• Recursive ZKPs enable the proving of proofs.

• zkEVMs are zero-knowledge virtual machines which are characterized by efficient
zero-knowledge proving of any type of computation.
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Major parts of this thesis have undergone a peer reviewed publication procedure at interna-
tional research conferences. In the following, we highlight where and how our publications
contributed to the contents of this thesis. We present our publications in chronological order.

A-PoA: Anonymous Proof of Authorization for Decentralized Identity Management.
Published in: IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Sydney,
Australia, 03-06 May 2021. Pages: 9. Authors: J. Lauinger, J. Ernstberger, E. Regnath, M. Hamad,
S. Steinhorst

In this work [83], we analyze privacy-preserving ways to delegate the authority of access
to another party in the ecosystem of decentralized identifiers. The contribution in this work
touches on the topics of ZKPs. We use a dedicated ZKP system to prove the access authority
via a privacy-preserving membership proof. The contents and findings of this work contribute
to the contents of Section 3.3 and the Appendices A and C in this thesis.

SoK: Data Sovereignty. Published in: IEEE 8th European Symposium on Security and Privacy
(EuroS&P), Delft, Netherlands, 03-07 July 2023. Pages: 21. Authors: J. Ernstberger, J. Lauinger,
F. Elsheimy, L. Zhou, S. Steinhorst, R. Canetti, A. Miller, A. Gervais, D. Song

In this work [84], we analyse the notions of data sovereignty which can be constructed
today. To construct data sovereignty from the device perspective, we assume that devices
have access to cryptographic material in form of key pairs. Further, we investigate advanced
cryptographic techniques and PETs (e.g. MPC, ZKPs, etc.) to protect data and accounts
during data administration, sharing, and outsourced processing. Minor parts of this work
contribute to the motivation in Chapter 1, and to the Sections 3.1 and 5.2 in this thesis.

zkGen: Policy-to-Circuit Transpiler. Published in: IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), Dublin, Ireland, 27-31 May 2024. Pages: 5. Authors: J.
Lauinger, J. Ernstberger, and S. Steinhorst

In this work [109], we automate the policy-driven automation of ZKP circuits. The pro-
posed functionalities let devices dynamically react to any privacy-preserving computation
requirements such that the provision of PET computation remains in the hands of devices
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instead of specialized services. The contents of this work have been used to create the contents
in Section 4.4 in this thesis.

Portal: Time-Bound and Replay-Resistant Zero-Knowledge Proofs for Single Sign-On.
Published in: IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Dublin,
Ireland, 27–31 May 2024. Pages: 7. Authors: J. Lauinger, S. Bezmez, J. Ernstberger, and S.
Steinhorst

In this work [82], we solve a security issue which concerns the ZKP verification at smart
contracts. Based on our finding, we propose a SSO alternative based on a sovereign, cost-
efficient identity system. This contribution enables merging our contributions A-PoA, Janus or
Origo, and Portal into a single system with strong data sovereignty guarantees. The findings
of this work have been used to create the contents in Chapters 1 and 5, Section 3.2, and the
Appendices A and C in this thesis.

Janus: Fast Privacy-Preserving Data Provenance For TLS. Published in: The 25th Privacy
Enhancing Technologies Symposium (PETS25), Washington DC, USA, 14–19 July 2025. Pages 20.
Authors: J. Lauinger, J. Ernstberger, A. Finkenzeller, and S. Steinhorst

In this work [58], we optimize the proof computations of clients in protocols that verify
the provenance of data. The insights of this work contribute to an efficient reclaiming of
data ownership for devices which store, maintain, and process data at external parties. The
findings of this work contribute to the creation of the Chapters 2 and 5, Section 4.1 and 4.2,
and the Appendices A and B in this thesis.

ORIGO: Proving Provenance of Sensitive Data with Constant Communication. Status:
Resubmission of major revision pending at PETS25. Published in: Cryptology ePrint Archive,
Pages: 17. Authors: , J. Ernstberger*, J. Lauinger*, Y. Wu, A. Gervais, and S. Steinhorst

In this work [97], we optimize protocols that verify the provenance of secure channel data
with respect to network bandwidth requirements. Our solution entirely removes the overhead
of secure 2PC computations and enables a deployment of TLS oracles at an Internet scale. The
findings of this work contribute to the contents in Section 4.1 and 4.3, and the Appendix B in
this thesis.

141



List of Figures

2.1. Overview of digital identity approaches, where digital identifiers and associated
data is managed either (i) at the web service itself, (ii) at dedicated identity
services, or (iii) at public digital infrastructures. . . . . . . . . . . . . . . . . . . 10

2.2. Overview of the Verifiable Credentials (VCs) ecosystem. This figure has been
recreated based on the illustration provided by the VC standard [31]. . . . . . 12

2.3. AEAD stream cipher configured with AES in the Galois/Counter mode (GCM).
The algorithm encrypts a plaintext pt = [pt1, . . . , ptl ] to a ciphertext ct =

[ct1, . . . , ctl ] under key k and authenticates the ciphertext ct and associated
data AD with the tag t. The symbol MH is a Galois field multiplication which
translates bit strings into GF(2128) polynomials, multiplies the polynomials
modulo the field size, and translates the polynomial back to the bit string
representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4. Binary Merkle Tree commitment structure on a set of data items xi, with i ∈
{0, . . . , N}. The depicted Merkle Tree has a depth D=2, leafs l1, . . . , l2D , parents
p1, p2∗2D−1−2, a root croot, and depends on the hash function H. The root croot

represents the commitment string and the witness w consists of the internal
witnesses wi, with i ∈ {0, . . . , N} and a Merkle path fpath(xi) that depends
on the committed data items. In this figure, the witness comprises the set of
tuples w=[(w1, [l2

2 , p2
2] = fpath(x1))], where l2

2 indicates that l2 is the second
concatenation when computing p1. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5. TLS 1.3 specification of session parameters. Characters at the beginning of lines
indicate if the server s, the client c, or both parties b call the functions per line. 28

2.6. Illustration of the 3PHS and exchanged cryptographic parameters between
the server, the proxy, and the client. The gray box at the bottom indicates the
relationship between shared client-side secrets Zv and Zp, which corresponds
to the session secret Zs of the server. . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7. The ECTF algorithm converts multiplicative shares in form of EC point x-
coordinates from points P1, P2 ∈ EC(Fp) to additive shares s1, s2 ∈ Fp. It holds
that s1 + s2 = x, where x is the coordinate of the EC point P1 + P2. . . . . . . . 31

142



List of Figures

2.8. Example of a garbled circuit C expressing the function f of a secure computation
via boolean logic gates. Every circuit wire wL is encoded with secret internal
labels i, a secret and random signal bit σL, external labels e=σL ⊕ i (where
i, e, σ ∈ {0, 1}), and wire keys ki

L. Internal labels are associated with input
data bits and the lists T l−d map output labels to output data bits. The gate-
wise garbling tables G(C) map tuples of external labels to garbled labels
concatenated with external labels. Output wires have neither external labels
nor signal bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1. The scope of data sovereignty with respect to the different fields of data
management. The process 1.X describes necessary functionalities to create
and maintain identifiers. The process 2.X indicates the functionalities of a
certification system which issues, presents, and verifies credentials. The process
3.X defines the functionalities of accountable access control. The process 4.X
achieves the strongest notion of data sovereignty and defines the policy-driven
processing of data that is never disclosed. . . . . . . . . . . . . . . . . . . . . . . 36

3.2. a) Overview of the Single Sign-On (SSO) delegated authentication and au-
thorization where the user agrees to a fixed policy (red box) of the Identity
Provider (IdP). Bold arrows indicate user-to-IdP interactions which track user
activities. b) Simplified view of the Portal identity system, where users manage
data and authenticate towards web services with self custody. © 2024 IEEE . . 40

3.3. ZKP circuit to verify a data item d of a private claim against a MT commitment
rootMT. The MT has a depth of 5 and a path pMT as the private witness. The
circuit has 9.29K constraints and evaluates d against ϕ="d[age]->-18" using the
function fϕ. The semicolon ; separates private inputs (left of ;) from boldly
formatted public inputs (right of ;). © 2024 IEEE . . . . . . . . . . . . . . . . . 45

3.4. Portal architecture to manage a private claim. The system deployment, user
registration, and the circuit pre-processing is indicated with dashed arrows
(1.1-1.6). The on-chain verification of private claims at time t1, and private claim
presentation towards a third-party service is depicted with solid lines (2.1-2.8).
The live verification at time t > t1 of a private claim is indicated with dotted
lines (3.1-3.4). To add a public claim, the user does not interact with the circuit
contract. © 2024 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5. Presentation of the ecosystem around Verifiable Credentials (VCs), highlighting
the missing relation between the Root Authority (RA) (Schema Creator) and the
Credential Issuing Authority (CIA) (Definition Creator & Credential Issuer).
Our work specifies a protocol for the establishment of a trust relation between
RAs and CIAs. © 2021 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6. Pseudocode of the RSA-accumulator generation (GenAcc), element generation
(GenAccElement), addition (Add), subtraction (Revoke) [39], and witness func-
tions (GenWit & UpdateWit) [40] together with the verification based on the
NI-ZKPoKE protocol (GenProof & VerifyProof ) [45]. © 2021 IEEE . . . . . . . . . 61

3.7. A-PoA protocol of membership authorization and verification. © 2021 IEEE . . 62

143



List of Figures

3.8. GenProof (left, lightgray) and VerifyProof (right, gray) execution times (ms) of
the NI-ZKPoKE protocol with 128-Bit polynomial time Hprime hash function
and the RSA-accumulator (2048-Bit). © 2021 IEEE . . . . . . . . . . . . . . . . . 65

3.9. Duration (ms) of adding elements xi to an already existing witness wt for a
single holder witness update (numbers averaged by 100 repetitions). © 2021 IEEE 66

4.1. High-level overview of data provenance solutions. The illustration of TLS
sessions in today’s web is depicted in the top left corner. TLS sessions, per
default, are secure channels between two parties and prevent a third-party
from verifying the provenance of TLS data. Data provenance protocols solve
this issue and certify TLS data such that TLS data becomes publicly verifiable.
TLS data is either attested on the server side (cf. bottom left corner) or by an
additional external party (cf. right side). . . . . . . . . . . . . . . . . . . . . . . . 69

4.2. Systematization of TLS oracles with regard to different deployment settings,
security assumptions, and usability properties. . . . . . . . . . . . . . . . . . . . 70

4.3. Overview of secure computation building blocks in TLS oracles. . . . . . . . . 72
4.4. High-level protocol of TLS oracles. After the key derivation computation (KDC),

it holds that kX = kvX + kcX, where X indicates server or client side AE keys.
Algorithms executed by two parties are surrounded by red boxes and achieve
security against malicious adversaries. The syntax ‘?encryption_mode:’ on
arrows applies the arrow if the TLS oracle configured the questioned encryption
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5. Circuit logic of ZKPs in the client challenge. The semicolon ; separates private
inputs (left side) from public inputs (right side). The function fϕ evaluates
conditions expressed by a public statement ϕ on the plaintext pt. . . . . . . . 80

4.6. Secure unilateral validation protocol in the asymmetric privacy setting to assert
correct garbling of CHVZK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7. Mutual SHTS verification at client parties. Red boxes indicate values derived
in maliciously secure 2PC protocols. . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8. Extending the ZKP circuit CAEAD (cf. Figure 4.5) to the HVZK circuit used by
our E2E-optimized TLS 1.3 oracle for the privacy-preserving and transparent
client challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.9. TLS cipher suite scan performed at the 11th of June 2024. Green bars refer to
TLS 1.3 cipher suites and yellow bars indicate TLS 1.2 cipher suites. . . . . . . 89

4.10. Scalability analysis of ZKP circuits, where circuits CMtE (dotted) are compatible
with TLS 1.2 only. Circuits Chvzk leverage Janus optimizations. Lines closer to
the bottom right corner are "better" and prove more data in less time. . . . . . 90

4.11. Illustration of the Origo protocol with respect to the TLS 1.3 protocol phases.
Besides message exchanges, the figure highlights additional processing require-
ments at the verifier and the client. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.12. Circuit logic of the Origo ZKP proof. Function arguments behind the semicolon
; indicate the public witness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

144



List of Figures

4.13. The first function in the figure presents the high-level ZKP circuit to prove the
TLS 1.3 key derivation. The second function is computed without a ZKP circuit
at the proxy to verify the finished authentication tag. We highlight variables
which count as public input with bold text. . . . . . . . . . . . . . . . . . . . . 101

4.14. Merkle-Damgård structure of the SHA256 hash function. Values marked in
red indicate private input whereas blue background indicates public input. To
protect a secret key, the prover must compute the first f (grey background) in
circuit. All remaining intermediate hash values f (white background) can be
computed out of circuit by the verifier and checked against the public input
hash value h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.15. Computation trace of the key derivation of a single TLS 1.3 application traffic
key. The figure differentiates between in-circuit and out of circuit computations
which are separately computed by the prover and verifier respectively. The
function f is the one-way compression blockcipher SHACAL-2 of SHA256 and
takes a 32 byte input as the first argument, a padding length helper as the
second argument, and a 64 byte input as the third argument. The function
returns the length l (required for padding) of the hashed input and the output
of the SHACAL-2 blockcipher. The initialization vector of f computes as
IV = H[0, . . . , 7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.16. Benchmarks of oracle specific ZKP circuits executed using the gnark framework.105
4.17. Overview of the Portal software architecture which, based on a gadget library,

transpiles a policy-specific circuit description (e.g. zkPolicy) into a constraint-
based representation of a ZKP circuit. © 2024 IEEE . . . . . . . . . . . . . . . . 108

4.18. JSON file expressing a ZKP circuit with the zkPolicy language. © 2024 IEEE . 109
4.19. Simplified entry of the gadget library that defines the parameters of an mimc

hash computation. The algorithm_type is set to cryptographic commitments
and the algorithm_id is the keyword "mimc". Parameters of arbitrary size are
indicated with a size=-1. © 2024 IEEE . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1. End-to-end protocol of a TLS 1.2 oracle running the first Janus optimization.
Boxes crossing two vertical lines indicate 2PC protocols. . . . . . . . . . . . . . 129

B.2. End-to-end protocol of a TLS 1.3 oracle running both Janus optimizations.
Boxes crossing two vertical lines indicate 2PC protocols. Orange boxes belong
to the garble phase and the blue box indicates the prove phase. . . . . . . . . 130

C.1. The Schnorr Proof of Knowledge protocol, as shown in [45]. . . . . . . . . . . 132
C.2. The NI-ZKPoKE zk.Prove and zk.Verify algorithms as defined in the work [45]. 135
C.3. Extraction and simulation algorithms to show the soundness of the zero-

knowledge property of the NI-ZKPoKE construction of the work [45]. The
witness extraction depends on the CRT. . . . . . . . . . . . . . . . . . . . . . . 136

C.4. Sequence of building blocks for the construction of general-purpose ZKPs. . . 137
C.5. Classification of information theoretic proofs based on the verifier capabilities. 138

145



List of Tables

2.1. Notations and formulas of TLS variables. . . . . . . . . . . . . . . . . . . . . . . 27

3.1. Portal Deployment and Transaction Costs. © 2024 IEEE . . . . . . . . . . . . . . 51
3.2. Portal Microbenchmarks and Simulation Scenarios. © 2024 IEEE . . . . . . . . 53
3.3. Comparison of Portal with Related Works. © 2024 IEEE . . . . . . . . . . . . . . 54
3.4. Glossary of Notations: (1) Roles, (2) Accumulator Parameters, and (3) Arith-

metic Modulo Primes & Composites. © 2021 IEEE . . . . . . . . . . . . . . . . . 58
3.5. Mean execution times (ms) of A-PoA with a 2048-Bit RSA- accumulator (λ =

128), k=50 elements, and 128-Bit hashes. © 2021 IEEE . . . . . . . . . . . . . . . 64

4.1. Mapping of TLS Computation traces to 2PC circuits. We use XHTS for SHT-
S/CHTS and XATS for SATS/CATS. . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2. Mapping protocols to cipher suites which support the configuration of the suite
of algorithms ECDHE_ECDSA_AES128_SHA256. . . . . . . . . . . . . . . . . . 91

4.3. End-to-end (E2E) benchmarks of open-sourced TLS oracles. For the LAN
setting, we assume a round-trip-time RTT=0 ms and a transmission rate rt=1
Gbps. The WAN setting assumes a RTT =50 ms and rt=100 Mbps. Protocols
starting with an * require an additional security assumption. Works marked
with a ’ use a transparent setup assumption to compute ZKPs. Entries marked
with " take over the value of the entry above. . . . . . . . . . . . . . . . . . . . . 92

4.4. Related works feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5. zkGen transpiler benchmarks. © 2024 IEEE . . . . . . . . . . . . . . . . . . . . . 113

B.1. Secure computation benchmarks to implement the Janus optimizations. We al-
locate values to offline/online execution and communication columns. Dashed
lines indicate which circuits belong to the handshake, record, and post-record
phases. The rows 1,2 use are maliciously-secure 2PC benchmarks averaged
over 10 executions using the framework emp-ag2pc. Other benchmarks have
been collected with the framework Go-based 2PC framework mpc. . . . . . . . 131

B.2. ZKP benchmarks averaged over 10 executions using the framework gnark.
We classify benchmarks into offline and online execution and communication
values such that merging ZKP numbers with 2PC numbers for system end-to-
end values becomes feasible. We use the abbreviations CCS, PK, and VK, PW,
and proof π, where PK and VK together form the common reference string of the
ZKP system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

146



Acronyms

1-RTT One Round-trip Time. 29, 74, 79, 83, 96, 116, 124

3PHS Three-party Handshake. 30, 77, 82, 84, 89, 97, 106, 123–125, 142

AE Authenticated Encryption. 30, 78, 144

AEAD Authenticated Encryption with Associated Data. 20, 29, 75, 79, 80, 82, 83, 86, 87, 89–91,
93, 98, 99, 128, 129, 142

AES Advanced Encryption Standard. 17, 20, 79, 80, 89, 91, 142

AI Artificial intelligence. 73, 74, 95

A-PoA Anonymous Proof of Authorization. 56, 57, 59, 60, 63–66, 146

ASCII American Standard Code for Information Interchange. 111

BGP Border Gateway Protocol. 97

C2PA Coalition for Content Provenance and Authenticity. 95

CATS Client Application Traffic Secret. 101

CBC Cipher Block Chaining. 29, 89

CBC-HMAC Cipher Block Chaining Hash-based Message Authentication Code. 78, 79, 88–91,
129

CBs Counter Blocks. 20, 87, 93, 128

CCPA California Consumer Privacy Act. 2

CCS Compiled Constraint System. 131, 146

CD Credential Definition. 12, 55–58, 60

CDH Computational Diffie-Hellman. 16

CF Client Finished. 29, 85

CH Client Hello. 29, 30, 74, 83, 84, 97, 98

147



Acronyms

CHTS Client Handshake Traffic Secret. 85

CIA Credential Issuing Authority. 12, 55–57, 59, 60, 62, 64–66

CORS Cross-Origin Resource Sharing. 71, 106, 118

CRT Chinese Remainder Theorem. 136, 145

CS Credential Schema. 12, 55–60, 63–66

DDH Decision Diffie-Hellman. 16

DHE Diffie–Hellman Exchange. 29, 30, 77, 78, 84, 100, 101

DHKE Diffie-Hellman Key Exchange. 29

DID Decentralized Identifier. 11, 12, 54, 55, 59, 60, 62, 63, 66, 116, 121

DLP Discrete Logarithm Problem. 16

DNS Domain Name System. 8, 76, 97, 98

DPF Data Policy Framework. 2

DSA Digital Services Act. 2

DSL Domain Specific Language. 108, 110–112, 137

E2E End-to-end. 74, 75, 88, 91, 116, 128, 129

EC Clliptic Curve. 16, 17, 30, 31, 78, 142

ECDHE Clliptic Curve Diffie–Hellman Exchange. 30, 89

ECDLP Elliptic Curve Discrete Log Problem. 16

ECTF Elliptic Curve to Field. 30, 31, 78, 82, 84, 89, 91, 142

eID Electronic Identity. 66

ENS Ethereum Name System. 11

EOA Externally Owned Account. 12
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