
Janus: Fast Privacy-Preserving Data Provenance For
TLS

Jan Lauinger, Jens Ernstberger, Andreas Finkenzeller, Sebastian Steinhorst
Technical University of Munich

Munich, Germany

Abstract—Web users can gather data from secure endpoints
and demonstrate the provenance of sensitive data to any third
party by using privacy-preserving TLS oracles. In practice,
privacy-preserving TLS oracles remain limited and cannot selec-
tively verify larger sensitive data sets. In this work, we introduce
a new oracle protocol, which reaches new scales in selectively
verifying the provenance of confidential web data. The novelty of
our work is a construction which deploys an honest verifier zero-
knowledge proof system in the asymmetric privacy setting while
retaining security against malicious adversaries. Concerning TLS
1.3, we optimize the garble-then-prove paradigm in a security
setting with malicious adversaries. Here, we show that a specific
operation mode of TLS 1.3 allows to use semi-honest secure
computations without authentic garbling for the majority of com-
putations in the garble phase. Our performance improvements
reach new efficiency scales in verifying private data provenance
and facilitate the practical deployment of privacy-preserving TLS
oracles in web browsers.

Index Terms—Data Provenance, Zero-knowledge Proofs, Se-
cure Two-party Computation, Transport Layer Security

I. INTRODUCTION

In the current age of the Internet where generative artificial
intelligence (AI) boosts the spread of misinformation as never
before, industry leading companies combat misinformation
with new data provenance initiatives to maintain a responsible
and verifiable data economy [1], [2]. The goal of the initia-
tives is the establishment and integration of data provenance
solutions into today’s web, which lacks support of verifiable
data provenance. For instance, secure channel protocols such
as transport layer security (TLS) provide confidential and
authenticated communication sessions between two parties: a
client and a server. However, if clients present data of a TLS
session to any third party (e.g. website), then the third party
cannot verify if the presented data originated from an authentic
and correct TLS session (cf. top part of Figure 1). Thus, the
third party cannot verify the provenance of the TLS data. In
the eyes of the third party, TLS data counts as authentic if the
origin of the data can be verified. Further, TLS data counts
as correct if the third-party is able to verify the integrity of
presented TLS data against a valid TLS session.

To save a third party from individually verifying data
provenance, current approaches either require servers to attest
to TLS data via digital signatures [?], [3], or employ TLS
oracles [4]–[6]. Data attestation through servers is an efficient
data provenance solution but requires server-side software
changes and access to a certification infrastructure. By con-
trast, TLS oracles relieve servers from maintaining a data

1. Capture TLS transcript
as proxy

3. Certify TLS data

Janus verifier

TLS Server

TLS data

TLS Client

TLS session

Trusts

Third-party

TLS Server

TLS data

TLS Client

TLS session

Trusts

Third-party

Today's web: No verifiable data provenance

Janus protocol: Fast verifiable data provenance of private data

Trusts

2. Challenge

Fig. 1. Illustration of TLS sessions in today’s web (top part) and TLS sessions
accompanied by a TLS oracle (bottom part). TLS sessions, per default, are
secure channels between two parties and prevent a third-party from verifying
the provenance of TLS data. In contrast, TLS oracles use a trusted verifier
to audit and certify the provenance of TLS data, making TLS data publicly
verifiable.

provenance infrastructure by taking over the provisioning and
verification of data provenance. Due to the seamless integra-
tion into the web, TLS oracles count as legacy-compatible as
they do not introduce any server-side changes. TLS oracles
depend on a verifier to examine the provenance of TLS data
(cf. Janus verifier at the bottom of Figure 1). To validate the
provenance of TLS data, the verifier captures the transcript
of a TLS session and challenges the TLS client with a
proof computation. If a TLS client can prove authenticity
and correctness of secret TLS session parameters against the
captured TLS transcript at the verifier, then the verifier certifies
the TLS data of the client. With the certificate, TLS clients
are able to convince any third party of data provenance if the
third party trusts the verifier.

TLS oracles have originated in the context of blockchain
ecosystems, where TLS oracles originally solved the “oracle
problem” of importing trustworthy data feeds to isolated smart
contracts [4], [6], [7]. However, TLS oracles are generally
applicable to the Internet, which makes them a crucial tech-
nique to build user-centric and data-sovereign systems [8].
For instance, through TLS oracles, users are able to present

solvency checks without giving up control and privacy of
their data [9]. The accountability and credibility guarantees of
data provenance systems are used to combat price discrimina-
tion [6], bootstrap legacy credentials [10], or attest if a digital
resource originated from a generative AI website [11].

Challenges: Even though different solutions exist, TLS
oracles remain constrained in the amount of sensitive data they
can validate. This means that for larger sensitive resources
such as confidential documents, images, or data sets, data
provenance solutions are impractical. For instance, clients are
required to prove non-algebraic encryption algorithms (e.g.
AES128) in zero-knowledge succinct non-interactive argument
of knowledge (zkSNARK) proof systems [6]. However, current
zkSNARK proof systems operate efficiently if the computed
algorithm relies on algebraic structures (e.g. MiMC [12]).
Another approach leverages the structure of TLS 1.3 stream
ciphers and separates non-algebraic algorithms from the com-
putations performed by the zkSNARK proof system [5]. In this
case, the client is required to know the structure of TLS data in
advance and cannot selectively verify dedicated parts of TLS
records. Even if the computation of non-algebraic algorithms
is shifted into a pre-computation phase [13], end-to-end (E2E)
efficiency of private provenance solutions remains expensive.

Contributions: Our work addresses the above mentioned
limitations with two new contributions. We leverage the fact
that, in the challenge phase (cf. stage 2 in Figure 1), TLS
oracles introduce an asymmetric privacy setting between col-
laboratively acting parties; the TLS client and the verifier. We
exploit the asymmetric privacy setting to combine a honest
verifier zero-knowledge (HVZK) proof system with a new val-
idation phase. The validation phase is unilaterally performed
by the client and establishes security guarantees equivalent
to related works (security against malicious adversaries). The
HVZK proof system [14] efficiently evaluates non-algebraic
algorithms and improves prove computation benchmarks in the
challenge phase. Our approach works transparently and does
not require a trusted setup security assumption. With that, our
work achieves new E2E benchmarks and solves a main bottle-
neck of current TLS oracles; the efficient evaluation of legacy
algorithms without compromising on security guarantees. Our
first contribution applies to TLS versions 1.2 and 1.3.

Our second contribution applies to TLS 1.3 in the one
round-trip time (1-RTT) mode. Here, we require the client
to select a cipher suite which is supported by the server. In
a non-optimistic scenario, the client is supposed to perform
one pre-fetch call. If the client sends a compliant client
hello (CH) message during the TLS 1.3 handshake, then the
server instantly responds with the entire server-side handshake
transcript. We leverage this effect and show that the verifier
can securely authenticate the server handshake traffic secret
(SHTS) in a malicious security setting. With access to an
authentic SHTS at the verifier, we run the garble-then-prove
paradigm [15] and rely on a semi-honest two party compu-
tation (2PC) system which does not depend on authenticated
garbling. We detect malicious activities of a client by matching
transcript commitments against authenticity guarantees derived

from SHTS. We achieve performance advantages by utilising
more lightweight, semi-honest TwoPC for the majority of TLS
1.3 computations.

Results: Our E2E benchmarks for TLS 1.3 verify 8 kB
of public TLS data in 0.58 seconds and verify 8 kB of
sensitive TLS data 6.7 seconds. Running TLS 1.2, we verify
8 kB of sensitive TLS data 6.2 seconds. Concerning proof
computations in the client challenge, our work outperforms
related approaches by a factor of 8x (cf. Section VI-B)
and relies on a security setting which does not require a
trusted setup assumption. In analogy to Roman mythology,
we name our contributions for TLS oracles after the god of
transitions, Janus. With that, the Janus optimizations guard
an efficient transition of web resources into a representation
where provenance can be verified. In summary,

• We formalize the asymmetric privacy setting of TLS 1.2
and TLS 1.3 oracles. We show that in the asymmetric
privacy setting, maliciously secure proof systems can be
replaced with a construction that combines a HVZK proof
system with a new unilateral validation phase.

• We optimize the efficiency of TLS 1.3 oracles by con-
sidering SHTS authenticity guarantees during the garble-
then-prove paradigm while retaining security properties
equivalent to previous works.

• We analyse the security of our constructions (cf. Ap-
pendix B), provide performance benchmarks (cf. Sec-
tion VI), and open-source1 the implementation of our
secure computation building blocks.

II. PRELIMINARIES

This section highlights the key concepts of TLS which
data provenance solutions build upon. In addition, we explain
necessary cryptographic building blocks and provide extensive
details of each cryptographic construction or protocol in the
Appendix A.

A. General Notations

The TLS notations of this work are introduced in Sec-
tion II-B, and closely follow the notations of the work [16].
Further, we denote vectors as bold characters x = [x1, . . . , xn],
where len(x) = n returns the length of the vector. Base
points of elliptic curves are represented by G ∈ EC(Fp),
where the finite field F is of a prime size p. For elliptic curve
elements, the operators ·,+ refer to the scalar multiplication
and addition of elliptic curve points P ∈ EC(Fp). The symbol
λ indicates the security parameter. For bits or bit strings, the
operators · represents the logical AND, and ⊕ represents the
logical XOR. Other operators describe a random assignment
of a variable with $←, the concatenation of strings with ||, and
the comparison of variables with ?

=. Concerning authenticated
encryption with associated data (AEAD) algorithms in the
Galois Counter Mode (GCM) mode, the symbol MH is a
Galois field (GF) multiplication which translates bit strings
into GF(2128) polynomials, multiplies the polynomials modulo

1https://github.com/januspaper/submission1/tree/pets

https://github.com/januspaper/submission1/tree/pets

TABLE I
NOTATIONS AND FORMULAS OF TLS VARIABLES.

Variable Formula

H2 H(ClientHello||ServerHello)
H3 H(ClientHello||. . . ||ServerFinished)
H6 H(ClientHello||. . . ||ServerCert)
H7 H(ClientHello||. . . ||ServerCertVfy)
H9 H(ClientHello||. . . ||ClientCertVfy)

label11 “TLS 1.3, server CertificateVerify”
(kSATS, ivSATS) | DeriveTK(s=SATS|CATS) =
(kCATS, ivCATS) (hkdf.exp(s,“key”,H(“ ”),len(k)),

hkdf.exp(s,“iv”,H(“ ”),len(iv)))

the field size, and translates the polynomial back to the bit
string representation.

B. Transport Layer Security

TLS is a standardized suite of cryptographic algorithms to
establish secure and authenticated communication channels
between two parties. TLS exists in different versions; TLS
1.2 and TLS 1.3. Generally, TLS has two phases, where the
handshake phase derives cryptographic parameters to secure
data sent in the record phase. TLS relies on the algorithms of
hash-based message authentication code (HMAC) and HMAC-
based key derivation function (HKDF) to securely derive
cryptographic parameters and relies on digital signatures to au-
thenticate parties (cf. ds.Sign, ds.Verify, hkdf.ext, hkdf.exp,
hmac in Figure 2). We provide further details of TLS-specific
security algorithms in the Appendix A and present TLS-
specific transcript hashes, labels, and key derivation functions
of traffic keys in Table I.

1) Handshake Phase: Key Exchange and Key Derivation:
To establish a secure channel between a server and a client,
TLS relies on the Diffie-Hellman key exchange (DHKE) to
securely exchange cryptographic secrets between two parties
(cf. Figure 2, lines 1-4). For example, with TLS 1.3 configured
to use elliptic curve cryptography, parties protect secrets x, y
with an encrypted representation X,Y and exchange X,Y
via the CH and server hello (SH) messages mCH, mSH. With
access to X,Y , only the client and server can securely derive
the Diffie–Hellman ephemeral (DHE) key, where DHE = x ·
y · G = y · X = x · Y holds. Both parties continue to use
DHE to derive traffic secrets. In the TLS 1.3 1-RTT mode, the
server is able to encrypt all server-side handshake messages
after receiving a supported client key share in the CH message
mCH.

In contrast, TLS 1.2 exchanges the messages mCH, mSH in
plain and refers to the DHE value as the premaster secret.
TLS 1.2 uses the premaster secret together with the client and
server randomness to derive a master secret, which, in turn, is
used to derive traffic secrets. When TLS 1.2 is configured to
used AEAD based on stream ciphers, TLS 1.2 generates two
application traffic keys to secure record phase traffic (kCATS,
kSATS). Otherwise, if TLS 1.2 uses a cipher block chaining
(CBC) mode to encrypt records, TLS 1.2 generates additional
message authentication code (MAC) keys. In contrast to the
GCM mode, the CBC mode counts as key-committing [13],

TLS Handshake between the client c and server s:

inputs: x $← Fp by c. (y $← Fp, skS , pkS) by s.
outputs: (tkCATS, ivCATS, tkSATS, ivSATS) to c and s.
1. c: X = x ·G; send X in mCH
2. s: Y = y ·G; send Y in mSH
3. b: dES = hkdf.exp(hkdf.ext(0,0),“derived” || H(“ ”))
4. b: DHE = x · y ·G; HS = hkdf.ext(dES, DHE)
5. b: SHTS = hkdf.exp(HS,“s hs traffic” || H2)
6. b: CHTS = hkdf.exp(HS,“c hs traffic” || H2)
7. b: (kCHTS, ivCHTS) = DeriveTK(CHTS)
8. b: (kSHTS, ivSHTS) = DeriveTK(SHTS)

9. b: fkS = hkdf.exp(SHTS, “finished” || “ ”)
10. s: SCV=ds.Sign(skS ,label11||H6); send SCV in mSCV
11. s: SF = hmac(fkS , H7); send SF in mSF

12. c: SF’ = hmac(fkS , H7); verify SF’ ?
= SF

13. c: ds.Verify(pkS , label11 || H6, SCV) ?
= 1

14. b: fkC = hkdf.exp(CHTS, “finished” || “ ”)
15. c: CF = hmac(fkC , H9); send CF in mCF

16. s: CF’ = hmac(fkC , H9); verify CF’ ?
= CF

17. b: dHS = hkdf.exp(HS,“derived” || H(“ ”))
18. b: MS = hkdf.ext(dHS, 0)
19. b: CATS = hkdf.exp(MS, “c ap traffic” || H3)
20. b: SATS = hkdf.exp(MS, “s ap traffic” || H3)
21. b: (kCATS, ivCATS) = DeriveTK(CATS)
22. b: (kSATS, ivSATS) = DeriveTK(SATS)

Fig. 2. TLS 1.3 specification of session secrets and keys. Characters at the
beginning of lines indicate if the server s, the client c, or both parties b call
the functions per line.

[17], which guarantees the existence of a non-ambiguous
mapping between traffic secrets and authentication tags. Per
default, TLS 1.3 generates two keys (kCHTS, kSHTS) to secure
handshake traffic and generates two keys to secure record
traffic (kSATS, kCATS). Due to the key-independence property
of TLS 1.3 [18], disclosing handshake traffic secrets (e.g.
SHTS) does not compromise the security of record traffic
secrets. For instance, to compute the server application traffic
secret (SATS), a party requires access the handshake secret
(HS). Even though, HS is used to derive SHTS (cf. line 5 of
Figure 2), hkdf.exp prevents the reconstruction of HS from
SHTS.

Authenticity: To mutually authenticate each other, both
parties exchange certificates and compute authentication pa-
rameters (cf. Figure 2, lines 9-16). Notice that in TLS, client-
side authentication is optional, which is why we omit client
certificates in Figure 2. But, we show the computations of the
server finished (SF) and client finished (CF) values, because,
to constitute an authenticated TLS session, both parties must
successfully exchange and verify the SF and CF messages
mSF,mCF. For server-side authentication, the server computes
the certificate verification value (e.g. SCV), which binds a
Public Key Infrastructure (PKI) X.509 certificate to the TLS

AND

ORAND

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1

Fig. 3. Example of a garbled circuit C expressing the function f of a secure
computation via boolean logic gates. Every circuit wire wL is encoded with
secret internal labels i, a secret and random signal bit σL, external labels
e=σL ⊕ i (where i, e, σ ∈ {0, 1}), and wire keys ki

L. Internal labels are
associated with input data bits and the lists T l−d map output labels to output
data bits.

transcript via a digital signature [19]. Here, the signature is
computed with the server secret key skS and is verified with
the corresponding server public key pkS . The client obtains
the server public key pkS in the PKI certificate and aborts the
TLS session if the signature verification fails.

2) Record Phase: The TLS record phase requires parties
to protect data with authenticated encryption (AE) algorithms
before data can be exchanged. AE algorithms translate plain-
text data pt into a confidential and authenticated representation
(ct, t), with ciphertext ct and authentication tag t. Ciphertext
data is computed based on block or stream cipher algorithms
and depends on keys established in the handshake phase.
We elaborate on TLS data protection algorithms in the Ap-
pendix A4.

C. Cryptographic Building Blocks

This section provides an overview of the cryptographic
fundamentals that support the Janus optimizations. Formal
descriptions of cryptographic building blocks can be found
in the Appendix A.

1) Semi-honest 2PC with Garbled Circuits (GCs): Secure
2PC allows two mutually distrusting parties with private inputs
x, y to jointly compute a public function f(x, y) without
learning the counterparty’s private input [20], [21]. A 2PC
system based on boolean garbled circuits involves a party p1
with input x as the garbler and party p2 with input y as the
evaluator. Party p1 is supposed to generate the garbled circuit
G(C), where the boolean circuit C implements the logic of
the public function f (cf. Figure 3). To generate the garbled
circuit, p1 randomly samples wire keys k0

L,k1
L and a signal

bit σL at every wire wL. For the purpose of evaluating the
function f , wire keys ki

L encode binary data representations of
f using internal labels i. The purpose of signal bits is twofold.
Signal bits encrypt internal bits to external bits eL=σ ⊕ i

which can be shared with p2. With that, signal bits enable
the evaluator to discover valid entries of garbled tables G(C)
through external bits e [22]. Further, signal bits randomize
garbled truth tables G(C) to obfuscate truth table bit mappings.

Once wire keys, signal bits, and external labels exist, p1
computes the garbled table entries as follows. Per row of
table G(C) (cf. Figure 3), the bit tuples in the left column are
combinations of external labels which correspond to incoming
gate wires. The right column contains double encrypted wire
keys that correspond to outgoing gate wires. For gates yielding
output labels, garbled entries encrypt wire keys. For intermedi-
ate gates, garbled entries encrypt wire keys concatenated with
corresponding external labels.

After garbling a circuit, p1 shares G(C), T l−d, and, if
x=[1,0], (k1a, e=0) and (k0b , e=1) with p2. To obtain wire
keys that correspond to the input bits of y, p2 interacts with
p1 in two 1-out-of-2 Oblivious Transfer (OT) protocols (cf.
Section II-C2). The OT protocol requires p1 to share ky

e, k
y
d

with corresponding external values with p2. Further, the OT
scheme gives p2 access to the keys (k0c , e=0) and (k1d, e=0) if
y=[0,1], and prevents p1 from learning p2’s selection of wire
keys. With access to G(C), input wire keys and corresponding
external labels, p2 is able to evaluate the garbled circuit. To
evaluate the first output bit, p2 decrypts the third entry of table
G(C0,(1,2)AND) and obtains (k0e , e=0). With that, p2 continues to
decrypt the first entry of table G(C1,(0,1)AND) to obtain k0f (cf.
Figure 3). Last, p2 decodes k0f using the decoding table T 0

l−d to
obtain the first output bit 0. If required, p2 shares the obtained
2PC output back to p1.

2) Oblivious Transfer: Secure 2PC based on GCs depends
on the 1-out-of-2 OT1

2 sub protocol to secretly exchange input
parameters of the circuit [23]. The OT1

2 scheme involves two
parties where party p1 sends two messages m1,m2 to party p2
and does not learn which of the two messages mb is revealed
to party p2. Party p2 inputs a secret bit b which decides the
selection of the message mb. In this work, we make use of the
OT1

2 scheme defined in the work [23], which does not require
a trusted setup. The trusted setup procedure introduces a third
party which (i) takes over the generation of cryptographic
material and (ii) is trusted to delete the underlying random
parameters of the material.

3) 2PC with Malicious Adversaries: We consider the
work [24] to secure the semi-honest 2PC defined in Sec-
tion II-C1 against malicious adversaries. The dual-execution
mode in [24] runs two instances of the semi-honest 2PC,
where both parties p1 and p2 successively act as the garbler
and evaluator. Subsequently, both parties interact in a secure
validation phase to verify if both executions yield the same
output. We describe details of the maliciously secure 2PC
system in the Appendix A5e.

4) Zero-knowledge Proofs based on Garbled Circuits:
Proof systems allow a prover p to convince a verifier v of
whether or not a statement is true. In theory, proof systems
rely on a NP language L and the existence of an algorithm
RL, which decides in polynomial time if w is a valid proof

for the statement x ∈ L by evaluating RL(x,w)
?
= 1. The

assumption is that for any statement x ∈ L, there exist a valid
witness w and no witness exists for statements x /∈ L [25],
[26]. Proof systems provide the properties, where

Completeness ensures that an honest prover convinces an
honest verifier by presenting a valid witness for a statement.
Soundness guarantees that a cheating prover cannot convince
a honest verifier by presenting an invalid witness for a state-
ment.
Zero-knowledge guarantees that a malicious verifier does not
learn anything except the validity of the statement.
HVZK holds if the zero-knowledge property can be shown
for a semi-honest verifier, who honestly follows the protocol
definition.

Interestingly, zero-knowledge is a subset of secure 2PC
and a zero-knowledge proof (ZKP) can be computed using
GC-based 2PC if only one party inputs private data. In this
work, we make use of the HVZK notion based on boolean
GCs [14]. In this setting, the garbler and constructor of the
GC acts as the verifier and is assumed to behave semi-honest.
The GC evaluates a function f , which yields {0, 1}. The
evaluator, as the prover, obtains the GC, input wire keys and
corresponding external labels but does not obtain the decoding
table. After the prover evaluates the GC and returns the wire
key which corresponds to a 1, the verifier is convinced of the
proof. Formal security proofs for completeness, soundness, and
HVZK of the garbled circuits proof system are provided in the
work [14].

5) Cryptographic Commitments: Commitment schemes al-
low a party to hide a message string m via a commitment
string c. The c.Commit algorithm outputting c takes as input
the message m and a secret commitment randomness r. To
verify if m computes to c under randomness r requires a party
to call an opening algorithm c.Open, which takes as input
m, c, r. Commitments count as binding if a non-ambiguous
mapping between m, r towards c exist.

Commitments are often used in protocols which rely on
ZKP cryptography. Using a ZKP to compute the c.Open
function allows a prover to convince the verifier from knowing
a valid commitment opening without revealing the witness. We
formally define commitment schemes in the Appendix A8

6) Secret Sharing: Secret sharing involves a trusted dealer
to break a secret into shares with a ss.Share algorithm. Shares
are distributed to qualified recipients which can reconstruct
the secret by computing individual shares back together with
a ss.Reconstruct algorithm [27]. In this work, we consider
secret sharing with an access structure of t=n=2, where t out
of n parties must add together secret shares to reconstruct the
secret [28]. We provide the formal definition of secret sharing
in the Appendix A7.

III. SYSTEM MODEL

The system model defines system roles, the threat model,
and system goals in form of security properties.

A. System Roles & Adversarial Behavior

Clients establish a TLS session with servers, query data
from servers, and present TLS data proofs to the verifiers.
We assume that clients behave maliciously and arbitrarily
deviate from the protocol specification in order to learn secret
shares of TLS session parameters from the verifier. Further,
malicious clients try to learn any information that contributes
to convincing the verifier of false statements on presented TLS
data.
Servers participate in TLS sessions with clients and return
record data upon the reception of compliant API queries. We
assume honest servers which follow the protocol specification.
Verifiers act as proxies and take over the role of TLS oracle
verifier. Verifiers are configured at the client and route TLS
traffic between the client and the server. We assume malicious
verifiers deviating from the protocol specification with the goal
to learn TLS session secret shares or private session data of
clients.

B. Threat Model

We rely on a threat model with secure TLS communication
channels between clients and servers (TLS security guarantees
hold). Further, we assume that fresh randomness is used per
TLS session. Network traffic, even if it is intercepted via a
machine-in-the-middle (MITM) attack by the adversary (e.g.
the client), cannot be blocked indefinitely. We assume up-to-
date Domain Name System (DNS) records at the verifier such
that the verifier can resolve and connect to correct Internet
Protocol (IP) addresses of servers. The IP address of a server
cannot be compromised by the adversary such that adversaries
cannot request malicious PKI certificates for a valid DNS
mapping between a domain and a server IP address. Servers
share valid PKI certificates for the authenticity verification in
the TLS handshake phase. Server impersonation attacks are
infeasible because secret keys, which correspond to exchanged
PKI certificates, are never leaked to adversaries. Our protocol
imposes multiple verification checks on the client and the
verifier, where failing verification leads to protocol aborts at
the respective parties. All system roles are computationally
bounded and learn message sizes of TLS transcript data. For
employed ZKP systems, we expect completeness, soundness,
and HVZK to hold. We assume that the client and verifier do
not collude.

C. System Goals

The following security properties concern the client and
verifier as the server is assumed to behave honestly.
Session-authenticity guarantees that verifiers attests web traf-
fic which originates from an authentic TLS session. Authen-
ticity is guaranteed if the verifier successfully verifies the PKI
certificate of the server.
Session-integrity guarantees that a malicious client and veri-
fier cannot deviate from the TLS specification if a TLS session
has been authenticated. This means that an adversary cannot
modify server-side or client-side TLS traffic in any TLS phase.
Notice that for client-side TLS traffic of the record phase, a

malicious client is able to send arbitrary queries to the server,
such that servers decide if queries conform with API handlers.
Session-confidentiality guarantees that the verifier neither
learns any entire TLS session secrets nor any record data
which has been exchanged between the client and the server.
Further, the notion guarantees that the verifier learns nothing
beyond the fact that a statement on TLS record data is true or
false.
MITM-resistance guarantees that the properties of session-
integrity, session-authenticity, and session-confidentiality hold
in a system setting, where adversaries are capable of mounting
MITM attacks.

IV. OPTIMIZING PROOF COMPUTATIONS IN THE
ASYMMETRIC PRIVACY SETTING

We analyze TLS oracles with regard to performance trade-
offs and the asymmetric privacy setting (cf. Section IV-A)
and deploy a HVZK proof system in the asymmetric privacy
setting (cf. Section IV-B). Our construction relies on a new
secure validation phase to establish security against malicious
adversaries (cf. Appendix B1).

A. Analyzing Oracles & Asymmetric Privacy

In this section, we analyze the performance bottlenecks of
TLS oracles and identify asymmetric privacy conditions.

1) Three-party Handshake: TLS oracles turn the two-party
protocol of TLS into a three-party protocol by introducing a
verifier [4]. The verifier ensures that the TLS data of the client
preserves integrity according to an authenticated TLS session
via a verifiable computation trace. To audit the integrity of
TLS data, the verifier and client establish a mutually vetting
but collaborative TLS client. To construct a collaborative TLS
client, TLS oracles replace the TLS handshake with a three-
party handshake (3PHS) [4], [6]. In the 3PHS, every party
injects a secret randomness such that the DHE secret on the
client-side depends on two secrets. As such, the DHE value,
which is individually derived at the server, can be jointly
reconstructed if the client and verifier add shared secrets
together. Appendix A1 presents the cryptography of the 3PHS.

The consequence of the 3PHS is that the client depends on
the computational interaction with the verifier to proceed in
a TLS session with the server. The client preserves computa-
tional integrity according to the TLS specification if the joint
TLS computations with the verifier progress. Without access
to the secret share of the verifier, clients cannot derive and
use full TLS secrets and encryption keys that are required for
the secure session with the server. Introducing false session
data on the client-side leads to a session abort at the server.

2) Client-side Two-party Computation: With secret shared
TLS parameters, the client and verifier proceed according to
the TLS specification by using secure 2PC techniques [6], [29].
To achieve efficient secure 2PC [4]–[6], TLS oracles convert
secret-shared DHE values in form of elliptic curve (EC)
coordinates into bit-wise additive secret shares with the Elliptic
Curve to Field (ECTF) algorithm (cf. Appendix A5) [30].
Additive secret shares can be efficiently added together in

ClientVerifier as ProxyServer

Three-party Handshake (3PHS)

ECTF

H
an

ds
ha

ke
R

ec
or

d

KDC KDC + Server Certificate Verify

A
sy

m
.

Pr
iv
ac

y

ZKP Client Challenge

Fig. 4. High-level protocol of TLS oracles. After the key derivation compu-
tation (KDC), it holds that kX = kvX + kcX , where X indicates server or
client side AE keys. Algorithms executed by two parties are surrounded by
red boxes and achieve security against malicious adversaries.

2PC circuits that are based on boolean GCs [6], [21], [24],
[31], [32]. After the ECTF conversion (cf. Figure 4), the
client and verifier perform the TLS key derivation and record
phase computations using maliciously secure 2PC based on
boolean GCs, which comes with optimized binary circuits for
the required computations [27], [33].

a) Mac-then-Encrypt (e.g. CBC-HMAC): The efficiency
of TLS oracles in the record phase heavily depends on the
cipher suite configuration. If TLS uses Mac-then-Encrypt
(MtE) AE (TLS 1.2 with cipher block chaining hash-based
message authentication code (CBC-HMAC)), then the client
and verifier end up deriving four secret-shared keys in the
handshake phase:

• kCATS=kvCATS+kcCATS to encrypt request data ptreq .
• kSATS=kvSATS+kcSATS to encrypt the data ptresp.
• ktCATS=kvtCATS+kctCATS to authenticate requests treq.
• ktSATS=kvtSATS+kctSATS to authenticate responses tresp.

The verifier can disclose encryption keys kvSATS , kvCATS

to the client as it suffices to control the integrity of joint TLS
computations by withholding keys to compute authentication
tags [6]. With respect to efficiency, the work [6] shows how
2PC circuits computing HMAC tags remain independent of
record sizes, making CBC-HMAC a 2PC-friendly option to
compute the record phase.

Another benefit of CBC-HMAC is that it counts as key
committing [6], [17], which guarantees the existence of an
unambiguous mapping between a TLS session key and record
data. As a consequence, capturing ct is the only requirement
for the verifier before secret shares can be disclosed to the
client. Further, TLS oracles use the key committing property
and simplify the ZKP computation during the client chal-
lenge to (i) three invocations of advanced encryption standard
(AES) and (ii) a selective data opening which leverages the
Merkle–Damgård construction [?], [6].

CMtE(pt, kc, kct ; kv, kvt, ctα=ct[end-3:], ϕ):
1. t’ = HMAC(kct + kvt, pt)
2. ctα’ = AES(kc + kv, t’)
3. assert: ctα

?
= ctα’, 1 ?

= fϕ(pt)
CAEAD(pt, kc ; kv, ct, iv, tα, ck, ϕ):
1. tα’ = [AES(kc + kv, 0),AES(kc + kv, iv||1)]
2. ct’ = AES(kc + kv, pt); ck’ = commit(kc)
3. assert: tα

?
= tα’, ck

?
= ck’, ct ?

= ct’, 1 ?
=fϕ(pt)

Fig. 5. Circuit logic of ZKPs in the client challenge. The semicolon ; separates
private inputs (left side) from public inputs (right side). The function fϕ
evaluates conditions expressed by a public statement ϕ on the plaintext pt.

b) AEAD (e.g GCM / CHACHA20 POLY1305): If TLS
is configured to protect records with AEAD algorithms (TLS
1.3 and optionally TLS 1.2), then the client and verifier
derive two secret-shared keys (kCATS=kvCATS+kcCATS ,
kSATS=kvSATS+kcSATS). AEAD keys encrypt and authen-
ticate records. Thus, to maintain session-integrity, the verifier
cannot disclose any secret shared AEAD key in the record
phase before receiving a commitment. Since keys are not
decoupled as with CBC-HMAC, the efficiency of TLS oracles
running AEAD cipher suites deteriorates for larger record
sizes. The bottleneck is the 2PC computation of authentication
tags, which evaluate algebraic structures (e.g. polynomials
over large fields GF(2128) for GCM and GF(2130 − 5) for
POLY1305) over all ciphertext chunks. Computing AES using
2PC is efficient as optimizations exist [31]. In Section V, we
optimize the 2PC complexity for TLS oracles running AEAD
cipher suites in the record phase and our optimization applies
to TLS 1.3 in the 1-RTT mode.

Insight 1: The performance of 2PC AEAD tag compu-
tations deteriorates for larger record sizes.

Further, AEAD configurations require special attention as
AEAD cipher suites are not key committing [13], [34]–
[37]. This means that an adversary can perform commitment
attacks [38]. For example, the message franking attack finds
two messages m1 ̸= m2 and two keys k1 ̸= k2 such that
encrypting m1 under k1 and encrypting m2 under k2 yield the
same ciphertext ct and tag t [39]. This attack is problematic
and would break session-integrity and, with that, session-
authenticity. In other words, a successful attack allows the
client to prove arbitrary TLS data as TLS-authentic in the
client challenge. TLS oracles solve this attack by letting the
client disclose a commitment of the key share to the verifier
(cf. Figure 4) [6]. The extra commitment binds the client to a
fixed key share, which is verified during the client challenge.
Fixing the key share must happen before the verifier discloses
remaining session secrets (e.g. kvX in Figure 4). Otherwise,
an attacker can arbitrarily compute valid authentication tags
and ciphertext chunks, which is a prerequisite to perform the
attack [39].

3) Client Challenge in Asymmetric Privacy Setting: Once
the client has gathered enough TLS data, the verifier reveals
remaining secret shares to the client (cf. Figure 4). When the

client obtains full access to session secrets, an asymmetric
privacy setting between the client and verifier is established.
Now, the client is able to access TLS data by decrypting
exchanged records which the verifier cannot.

To preserve session-integrity, the verifier confronts the client
with irreversible challenges via ZKP circuits (cf. Figure 5).
For cipher suites running MtE, the client must prove that
the plaintext evaluates against the authentication tag which is
encrypted under the last three ciphertext chunks. For AEAD
cipher suites, the client shows that the secret key share kc
maps to (i) the previously shared key share commitment, (ii)
connects plaintext and ciphertext chunks, and (iii) computes
to intermediate values tα for the tag computation. The verifier
obtains intermediate values from the client and continues the
computation and verification of authentication tags out-of-
circuit.

Current TLS oracles rely on maliciously secure proof sys-
tems (e.g. Groth16, Plonk), which efficiently evaluate alge-
braic or zkSNARK-friendly arithmetic [?], [6], [13], [15], [29].
However, the ZKP circuits (cf. Figure 5) heavily depend on
legacy algorithms (e.g. AES or SHA256) which rely on non-
algebraic arithmetic.

Insight 2: Proof systems are not tailored to the arith-
metic requirements and the privacy setting found in TLS
oracles.

In Section IV-B, we show how lightweight proof systems,
which efficiently evaluate non-algebraic algorithms, can be
optimized in an asymmetric privacy setting.

B. HVZK and Asymmetric Privacy

This section picks up on our second insight (cf. Sec-
tion IV-A3) and formalizes asymmetric privacy. Further, in
the asymmetric privacy setting, we secure a HVZK proof
system against malicious adversaries by adding a new unilat-
eral validation phase. Subsequently, we show how our formal
definitions apply to TLS.

1) Formalizing Asymmetric Privacy: In the scope of this
work, we formalize asymmetric privacy in a setting with
three parties; parties p1 and p2 and a trusted dealer d. We
rely on a maliciously secure 2PC scheme Π2PC, a secure
commitment scheme ΠCom, and a secret sharing scheme ΠSS
(cf. Appendix A for formal definitions).

To set up an asymmetric privacy setting between p1 and p2,
the dealer d calls ΠSS.Share and individually shares r1 with
p1 and r2 with p2. It holds that the secret shares r1+r2 sum
to r. We define two cases to commit a message string m into
a commitment string c using r. The first case requires p1 and
p2 to execute a circuit C in the 2PC scheme Π2PC , where
C calls ΠSS.Reconstruct and ΠCom.Commit. In this case, p1
inputs m and r1 and p2 inputs r2. After the commitment c has
been computed and disclosed, p2 releases the secret share r2
to p1, and, with that, initiates the asymmetric privacy setting.
Now, p1 can reconstruct r. With access to m and r, only p1
is capable of successfully proving ΠCom.Open.

For the second case, the trusted dealer computes and dis-
closes the commitment string c on a message string m with

randomness r. If the trusted dealer performs the commitment,
then the dealer additionally shares the message string m with a
party (e.g. with p1). To set up the asymmetric privacy setting,
p2 discloses the secret share r2 after receiving the commitment
string c from the dealer. In the second case, the dealer and
p1 have access to r and can prove a successful commitment
opening to p2.

2) HVZK and Selective-failure Attacks: To improve the
performance of proof computations during the client challenge
(cf. Figure 4), we deploy a HVZK proof challenge to evaluate
the circuits of Figure 5. We consider the asymmetric privacy
setting between p1 as the client and p2 as the verifier, where
p1 has access to all TLS session secrets. The proof system
of the work [14] uses semi-honest 2PC based on boolean
garbled circuits to achieve the notion of HVZK and assumes
an honest verifier (cf. Section II-C4). However, in a setting
with malicious adversaries, semi-honest 2PC is susceptible to
selective failure attacks [31]. Notice that if a malicious p2
intentionally corrupts one or multiple rows of the garbling
tables, p2 can learn information on which row has been
evaluated by p1. On top and with knowledge of the row
permutations, p2 is capable of deriving secret information of
p1’s inputs. In the following subsection, we introduce a secure
validation protocol which is unilaterally performed by p1. The
validation detects a maliciously acting p2 before any secrecy
leakage occurs.

3) Unilateral Secure Validation: The unilateral secure val-
idation is performed once p1 obtains all public semi-honest
2PC parameters of the HVZK proof system [14], which
comprise garbled tables G(CHVZK) and external labels e (cf.
Section II-C1). The parties p2 and p1 exchange wire keys k
corresponding to the private inputs pt via the OT1

2 oblivious
transfer protocol [23] and p2 omits sharing the output label
decoding table T l−d. The party p2, acting as the garbler
and verifier, is convinced of the HVZK proof if p1, acting
as the evaluator and client, returns the output wire key that
corresponds to the output bit 1. Depending on the cipher suite,
the 2PC circuit CHVZK implements the logic of the circuits
CMtE or CAEAD (cf. Figure 5) and yields a 1 if all assertions
are satisfied.

In the default HVZK proof system [14], the client p1 must
return the output wire key back to the verifier p2 to complete
the HVZK proof protocol. However, to achieve security in a
malicious setting, we require p1 to run a new secure validation
phase (cf. Figure 6). The unilateral validation enforces p1 to
share a commitment ckout

of the output wire key. After sharing
the commitment ckout

, p2 discloses all garbling parameters
of the semi-honest 2PC computation with p1. Revealing all
garbling parameters allows p1 to verify if CHV ZK has been
garbled correctly by recomputing the garbled circuit. And,
due to the asymmetric privacy setting, p1 learns nothing new
because all TLS session secrets of p2 have already been shared
with p1. If p1 detects a malicious garbling, then p1 aborts the
protocol. Otherwise, p1 discloses the commitment randomness
r such that p2 can verify the correct output wire key via ckout .
We show the security of this construction in the Appendix B1.

Unilateral Secure Validation

Fig. 6. Secure unilateral validation protocol in the asymmetric privacy setting
to assert correct garbling of CHVZK.

4) TLS Compatibility: Our formalization is compatible with
the typical TLS oracle setting with a single verifier. The
server takes over the role of the trusted dealer to set up
multiplicative secret shares between the client parties via
the 3PHS. Subsequently, the ECTF protocol converts client
secret shares into an additive representation. The client and
verifier collaboratively commit to TLS session parameters by
computing authentication tags and ciphertext chunks (cf. first
case commit in Section IV-B1). Otherwise, the client-side
parties receive commitments by capturing server-side traffic
(cf. second case commit in Section IV-B1). Remember that if a
cipher suite is not key-committing (e.g. AEAD cipher suites),
then the verifier needs an additional key share commitment
from the client. Access to secure commitments is a prerequisite
for the asymmetric privacy setting. Next, the verifier initiates
the asymmetric privacy setting by disclosing secret shares of
TLS parameters to the client. From here on, only the client
is capable of computing valid commitment openings. Thus, in
the client challenge, a HVZK proof system with our unilateral
validation protocol can be deployed.

V. OPTIMIZING END-TO-END PERFORMANCE

Our second contribution applies to TLS oracles running
the TLS 1.3 1-RTT mode and targets our first insight (cf.
Section IV-A2) by mainly optimizing 2PC computations in
the record phase. In detail, we show how client parties can
securely derive and authenticate the SHTS parameter in a
malicious security setting (cf. Section V-A). Subsequently, we
leverage the SHTS authenticity to deploy an optimized garble-
then-prove paradigm, which entirely relies on semi-honest 2PC
techniques (cf. Section V-B).

A. Authenticating SHTS

This section explains why pre-fetching cipher suites is a
necessity to reliably validate SHTS authenticity. Further, we
show how our SHTS validation sequence counters possible
attacks.

1) Pre-fetch for Immediate Server-side Handshake Tran-
script: We consider the 1-RTT mode of TLS 1.3, where
servers immediately derive session secrets and return authen-
ticated handshake messages upon the reception of compliant

CHCH'

KDC Capture

Verify SHTS

Server-side Handshake Transcript

ECTF

3PHS

SHTS

Verify SHTS

Fig. 7. Mutual SHTS verification between client parties. Red boxes indicate
values derived in maliciously secure TwoPC systems.

CH messages (cf. Figure 7). Even though TLS 1.3 allows the
configuration of three AEAD cipher suites and two possible
parameters for the key agreement (ECDHE with X25519 or
P-256), clients may select an unsupported parameterization.
In this case, TLS parameters must be renegotiated. To prevent
any renegotiation, we expect clients to perform a single pre-
fetch call to detect possible configurations. This way, clients
and verifiers can reliably expect and capture the server-side
handshake transcript if a compliant CH message is sent to the
server.

2) Compute and Disclose of SHTS: Once clients receive
the server-side handshake traffic, both the client and verifier
continue to derive secret-shared session parameters via the
3PHS (cf. Appendix A1) and the ECTF protocol (cf. Ap-
pendix A5b) [5], [6]. In the end, the verifier locally main-
tains s1 and the client locally keeps s2 and it holds that
s1 + s2 = DHE. To derive SHTS, the verifier and client
evaluate the circuit CSHTS (cf. Table II) in a maliciously secure
2PC system. Similar to the works [?], [6], [35], we leverage the
fact that, during the handshake phase, the client can securely
disclose the SHTS parameter to the verifier. Even though the
verifier knows SHTS, the key independence property of TLS
1.3 prevents the verifier from learning the HS secret [18], as
HS is protected by hkdf.exp (cf. line 5 and 17 of Figure 2).
Without access to HS, the adversary cannot derive application
traffic keys from HS.

3) Attacking SHTS Authenticity: The server-side handshake
transcript contains the SF message, which can be seen as
a commitment to established TLS session parameters [?],
[35]. We require both client parties to capture the server-side
handshake transcript before the client and verifier compute
SHTS via the 2PC circuit CSHTS (cf. Figure 7). This condition
prevents adversaries from forging the authenticity of SHTS as
client parties can validate handshake session secrets against
the commitment (cf. Appendix B2).

To provide more context, the following aspects must be
considered. Our system model prevents the adversary (i)
from compromising the server’s private key and (ii) from
accessing full handshake secrets through the 3PHS and the
ECTF protocol. Thus, to obtain a valid signature from the
server, an adversary must replay a previous and individually
established handshake transcript.

TABLE II
MAPPING OF TLS COMPUTATION TRACES TO 2PC CIRCUITS. WE USE

XHTS FOR SHTS/CHTS AND XATS FOR SATS/CATS.

Circuit Computation Trace

CXHTS DHE=s1+s2; DHE to XHTS
C(k,iv) DHE=s1+s2; DHE to (kcXATS, kvXATS, ivXATS)
CCB2+

(kcXATS, kvXATS, ivXATS) to CB2+

Ct (kcXATS, kvXATS, ivXATS, ct) to t
Copen DHE=s1+s2; DHE to SHTS; DHE to CB

a) Malicious Client: If the adversary takes the role
of the client, then the verifier injects fresh randomness by
determining the CH transcript. As a consequence, a replayed
handshake signature does not match the new transcript and the
adversary cannot sign a new transcript without the server’s
private key. Thus, in this scenario, the signature verification
detects malicious behavior.

b) Malicious Verifier: If the adversary acts as a verifier,
then the adversary determines the CH message transcript
which the client cannot. This gives the adversary the oppor-
tunity to replay a previously established handshake session,
where the adversary knows the session secret DHE. If we
allow the computation of SHTS before capturing the server-
side handshake transcript, the following attack is possible2:
The adversary picks a random input to compute SHTS’ and
recomputes the last part of a previously established handshake
transcript using SHTS’ (cf. lines 8,9,11 of Figure 2). Once
the adversary shares the forged server-side handshake tran-
script, the client accepts because the SF validation succeeds.
Afterwards, the adversary accepts any incoming requests from
the client which could contain confidential data (e.g. cre-
dentials). This attack compromises session-authenticity and
session-integrity. However, if the client honestly proceeds
the 2PC computations according to TLS 1.3, then session-
confidentiality on record phase data holds.

We close this attack with the previously defined condi-
tion, where client parties capture the server-side handshake
transcript before the joint evaluation of SHTS. Here, the
adversary is faced with the following challenge. The adversary
must replay a handshake transcript which complies with the
prospective SHTS value. Since the adversary cannot predict
the outcome of CSHTS without access to the secret s2 of the
client, the adversary has negligible chances in guessing a
compliant SF message beforehand (cf. Appendix B2). This
way, session-authenticity and session-integrity hold.

4) SHTS Validation: The validate SHTS, the client and
verifier match the locally computed SF’ values against the SF
value from the server. To access SF, both client parties derive
the handshake traffic secrets kSHTS, ivSHTS and decrypt server-
side handshake messages. Additionally, the client parties assert
the validity of the server’s certificate. Afterwards, the client
side jointly computes CCHTS using maliciously secure 2PC,
which outputs the client handshake traffic secret (CHTS) to

2This attack applies to the wok [6] in the TLS 1.3 mode. The work [29]
indicates this attack. Our work provides the first full attack description and
proposes a countermeasure.

CzkOpen(s2, pt ; s1, Iopen, ct, t, SHTS, ϕ):

1. SHTS’, CB’ = Copen(s1, s2, Iopen)
2. ct’ = CB’ ⊕ pt, t’ = [CB0’ , CB1’]
3. assert: SHTS’ ?

=SHTS, ct’ ?
= ct, t’ ?

= t, 1 ?
=

fϕ(pt)
CtpOpen(s2 ; s1, Iopen, CB, t, SHTS):

1. SHTS’, CB’ = Copen(s1, s2, Iopen), t’ = [CB0’,
CB1’]
2. assert: SHTS’ ?

=SHTS, t’ ?
= t, CB ?

= CB’

Fig. 8. Extending the ZKP circuit CAEAD (cf. Figure 5) to the HVZK circuit
used by our E2E-optimized TLS 1.3 oracle for the privacy-preserving and
transparent client challenges.

the client. With CHTS, the client completes the handshake by
computing and sharing the CF message.

B. Garble-then-prove with Semi-honest 2PC

We apply a modified garble-then-prove paradigm [15]. In
the garble phase, we replace 2PC computations based on
authenticated garbling with lightweight semi-honest 2PC com-
putations that do not require authenticated garbling. We show
the security of our construction in the Appendix B3.

1) Intuition of Garble-then-Prove: The idea behind the
garble-then-prove paradigm is as follows. If a malicious client
acts as the garbler of the semi-honest 2PC system, then the
client can mount selective failure attacks throughout the record
phase. However, as TLS oracles eventually disclose session
secrets of the verifier, the malicious client learns nothing
beyond what the honest client would have learned. The prove
phase is supposed to (i) detect any cheating activities of
the client and (ii) provide the verifier with a conditional
abort option before any data attestations occur. To do so,
the prove phase recomputes and compares all semi-honest
2PC computations of the client against securely authenticated
session parameters at the verifier (cf. Section V-B3).

2) Garble Phase: In the garble phase, the client and
verifier collaboratively evaluate multiple 2PC circuits (cf.
Table II), where the client acts as the garbler and the verifier
acts as the evaluator. In the handshake phase, the circuit
C(k,iv) yields secret-shared application traffic secrets to the
client and verifier. The additive relation of secrets (e.g.
kXATS=kcXATS+kvXATS) continues to hold.

In the record phase, the 2PC circuit CCB2+
outputs counter

blocks CBi (cf. Figure ??) to the client, with i¿1. To prevent
commitment attacks on records, no block CBi ever includes
any CB0,CB1 blocks. To encrypt a request, the client computes
ctreq = CB2+ ⊕ ptreq and shares the ciphertext ctreq with the
verifier. Next, the client parties jointly compute treq using Ct
and the verifier sends the request to the server. After client
parties receive a response (ctresp, tresp), the verifier discloses
all session secrets and initiates the asymmetric privacy setting.
Notice that computing the AEAD key commitment ck is
redundant because, in the client challenge, we can consider
SHTS as an authenticated commitment on session secrets.

3) Prove Phase: The prove phase starts with the asym-
metric privacy setting (cf. Section IV-B), where the verifier
has captured the TLS 1.3 transcript and disclosed session
secrets to the client. The prove phase of this work considers
the authenticated SHTS parameter as a commitment string.
Further, the 2PC circuit CHVZK of the client challenge is set to
the CzkOpen algorithm (cf. Figure 8). The circuit Copen derives
SHTS and counter blocks CBi, where the list of indices Iopen

indicates the plaintext/ciphertext chunks of interest. The client
determines Iopen according to plaintext chunks that are passed
to fϕ. Notice that the assertion of the authentication tag is
reduced to comparing intermediate values CB0,CB1. The in-
circuit derivation of CB0,CB1 hides application traffic keys
from the verifier and frees CzkOpen from expensive algebraic
operations (e.g. multiplication of GF polynomials). Remember
that the HVZK proof system which evaluates CzkOpen runs the
unilateral secure validation to detect a malicious verifier (cf.
Section IV-B). After the client challenge, the verifier derives
tresp’ from t’ out-of-circuit and asserts if tresp’ ?

=tresp. If all
assertions succeed, the verifier attests the TLS 1.3 data of the
client (cf. Section V-C3).

C. Additional Considerations

The following aspects complete the context of TLS oracles
beyond our contributions in Section V-A and V-B.

1) Operation Modes: TLS oracles can be operated in two
different modes, which introduce distinct arrangements in
the prove phase. Both operation modes depend on a list of
indices Iopen, which the client shares to the verifier. The
client selectively determines Iopen once all session secrets are
obtained. Otherwise, the client could not access data of server-
side records. The verifier uses Iopen to identify public inputs
in form of ciphertext chunks for the verification of CHVZK (cf.
Figure 8).

Transparent Mode In the transparent mode, the verifier
checks (i) if the AEAD encryption of presented plaintext
chunks matches the captured ciphertext transcript and (ii) if
a computation trace from the encryption key to SHTS exists.
To prevent the verifier from learning TLS encryption keys,
the transparent mode requires an adapted circuit CtpOpen (cf.
Figure 8). CtpOpen takes as public input counter blocks CB,
which have been computed and shared by the client. Further,
CtpOpen asserts SHTS, counter blocks CB, and authentication
tags via intermediate values. The assertions 1

?
= fϕ(pt) and

ct ?
=ct’=CB ⊕ pt are computed out-of-circuit because plaintext

chunks are publicly disclosed.
Privacy-preserving Mode In the privacy-preserving mode,

the client does not share pt. Instead, the client shares Iopen and
proves knowledge of authentic plaintext data via the HVZK
proof system. To do so, the client evaluates the 2PC circuit
CzkOpen and applies the unilateral secure validation.

Example: We assume that TLS is configured to use AES
in the GCM mode. Further, we assume that the TLS data of
interest for the validation according to fϕ is contained in ct3
of the response (ct, t). In this case, the index i=3 is included in

the list Iopen. With Iopen, the zkOpen circuit is able to compute
the right CB2+index, and consider CB5=AES(k, iv|| . . . 5) for
the computation of ct5’=CB5 ⊕ pt5. If the assertions against
public inputs succeed (e.g. ct5’ ?

= ct5), and CB5 has been
derived with secrets that match a verified SHTS, then the data
pt5 preserves session-integrity and session-authenticity.

2) Processing Multiple Records: Concerning the collab-
orative processing of multiple records in the record phase,
we differentiate computations with respect to the following
dependencies:

Requests are independent of responses. If no request
depends on the contents of a response, then the circuit CCB2+ is
only called for the compilation of requests. Response counter
blocks (CBs) can be locally computed by the client once
the asymmetric privacy setting enforces the disclosure of full
session secrets to the client.

Requests depend on responses. If a request of number
n > 1 depends on the contents of responses ct=[ct1, . . . , ctl],
where each response ctm has an index m < n, then the client
and verifier perform l executions of the circuit CCB2+

. The
evaluation of l circuits CCB2+

yields l vectors of encrypted
counter blocks CB2+ to the client. With l vectors of CB2+,
the client is capable of accessing the contents of the responses
ct=[ct1, . . . , ctl] to construct the n-th request. To preserve
MITM-resistance and prevent commitment attacks, it must
hold that the verifier intercepts the pair (ct, t) before the circuit
CCB2+

outputs the corresponding CB2+ of response ct.
3) Data Attestation: If the client challenge succeeds suc-

cessfully, the verifier attest to the verified TLS data. The
attestation structure depends on the operation modes. In the
transparent mode, the verifier hashes verified TLS data and
signs the hash. Thus, the certification parameter pcert=(t,
ϕ, pk, σ) of the transparent attestation includes a signature
σ=ds.Sign(sk,[ϕ, t]) computed at time t. The verifier over-
writes the statement ϕ = H(pt) to the hash of verified data
such that every third party can evaluate presented TLS data
against ϕ and against arbitrary statements. In the privacy-
preserving mode, the structure of pcert remains the same
except that the statement ϕ expresses asserted constraints.
The privacy-preserving attestation convinces any third party
of the fact that the verifier successfully validated TLS data
provenance against the statement ϕ at time t. The certificate
pcert enables verifiable TLS data provenance as pcert can be
verified by any third party who trusts the verifier and the
server.

VI. PERFORMANCE EVALUATION

The evaluation describes the software stack and measures
the impacts of our two contributions; The first contribution
improves proof computation times for TLS 1.2/1.3 oracles.
The second contribution improves the E2E performance of
TLS 1.3 oracles. We provide micro benchmarks on a circuit
level in the Appendix C.

25 27 29 211 213

Size of Data Chunks (B)

2−2

21

24

27

210

P
ro

ve
T

im
es

(s
)

CzkAEAD
ChvzkzkOpen

CzkMtE

ChvzkMtE

ChvzktpOpen

Fig. 9. Scalability analysis of ZKP circuits, where circuits CMtE (dotted) are
compatible with TLS 1.2 only. Circuits Chvzk leverage Janus optimizations.
Lines closer to the bottom right corner are ”better” and prove more data in
less time.

TABLE III
MAPPING PROTOCOLS TO CIPHER SUITE MODES WHICH SUPPORT THE

ECDHE ECDSA AES128 SHA256 CONFIGURATION.

Mode Variant Protocols
12_GCM AEAD TLSn
12_CBC MtE Deco,Janus12
13_GCM AEAD DiStefano, DecoProxy, Origo, Janus13

A. Implementation

Tooling: We implement the 3PHS by modifying the Golang
crypto/tls standard library3 and configure the NIST P-256
elliptic curve for the elliptic curve Diffie–Hellman exchange
(ECDHE). Our ECTF conversion algorithm uses the Golang
Paillier cryptosystem4. We use the mpc library5 to access semi-
honest 2PC based on garbled circuits, which supports the
optimizations free-XOR [?], fixed-key AES garbling (AES-NI
instruction set) [?], and half-gates [?]. We adjust mpc to output
single wire labels if we execute 2PC circuits in the context of
the HVZK proof systems. We rely on the ag2pc framework6

to implement maliciously secure 2PC circuits in TLS 1.2. To
compute ZKPs, we rely on the gnark framework [40]. We
open-source our secure computation circuits7. Based on our
cipher suite analysis (cf. Appendix C1), we implement the
secure computation circuits AES128 and SHA256 to achieve
compatibility with the most popular TLS 1.2/1.3 cipher suites.

E2E Benchmarks: The numbers of TLSn8 and DiStefano9

are reproduced by running publicly available experiments (cf.
Table IV). Due to the fact that Deco [6] is closed source, we
open source our Decozk re-implementation10, which executes
TLS 1.2 configured with CBC-HMAC. The implementation of
Janus12 is equal to Decozk except for the post-record phase.
Here, Janus12 employs the HVZK proof system implemented
with the mpc framework. The TLS 1.3 oracles DecoProxy and
Janus13 rely on AEAD cipher suites which we implement

3https://pkg.go.dev/crypto/tls
4https://github.com/didiercrunch/paillier
5https://github.com/markkurossi/mpc
6https://github.com/emp-toolkit/emp-ag2pc
7https://github.com/januspaper/submission1/tree/pets
8https://github.com/tlsnotary/tlsn/tree/main
9https://github.com/brave-experiments/DiStefano/tree/main
10https://github.com/januspaper/deco12mte-reimplementation

https://pkg.go.dev/crypto/tls
https://github.com/didiercrunch/paillier
https://github.com/markkurossi/mpc
https://github.com/emp-toolkit/emp-ag2pc
https://github.com/januspaper/submission1/tree/pets
https://github.com/tlsnotary/tlsn/tree/main
https://github.com/brave-experiments/DiStefano/tree/main
https://github.com/januspaper/deco12mte-reimplementation

TABLE IV
END-TO-END (E2E) BENCHMARKS OF OPEN-SOURCED TLS ORACLES. FOR THE LAN SETTING, WE ASSUME A ROUND-TRIP-TIME RTT=0 MS AND A

TRANSMISSION RATE Rt=1 GBPS. THE WIDE AREA NETWORK (WAN) SETTING ASSUMES A ROUND-TRIP TIME (RTT) =50 MS AND Rt=100 MBPS.
PROTOCOLS STARTING WITH AN * REQUIRE AN ADDITIONAL SECURITY ASSUMPTION. WORKS MARKED WITH A ’ USE A TRANSPARENT SETUP

ASSUMPTION TO COMPUTE ZKPS. ENTRIES MARKED WITH ” TAKE OVER THE VALUE OF THE ENTRY ABOVE.

Communication (kb) Execution LAN (s) / WAN (s)
Protocol Data vTLS Offline Handshake Record Post-record Offline Handshake Record Post-record
TLS - 1.2 - 1.6 0.67 - - / - 0.32 / 0.72 0.3 (ms) / 0.2 - / -
TLSntp 579b 1.2 178 (MB) 36 (MB) 40 (MB) 0.57 3.3 / 17.54 1.18 / 4.46 1.12 / 4.52 0.76 / 0.9
Decozk 32b 1.2 523.51 (MB) 294.52 150.55 0.23 14.38 / 56.26 0.94 / 2.36 0.68 / 1.59 0.76 / 0.86
’Janus12zk 32b 1.2 415.22 (MB) ” ” 28.13 2.9 / 36.1 ” / ” ” / ” 0.08 / 0.23
TLS - 1.3 - 1.42 0.71 - - / - 0.36 / 0.76 0.49 (ms) / 0.2 - / -
*Origozk 32b 1.3 367.61 (MB) ” ” 0.24 29.16 / 58.56 ” / ” ” / ” 1.26 / 1.36
*DecoProxyzk 32b 1.3 578.47 (MB) 307.7 ” 0.27 24.34 / 70.61 0.95 / 2.37 ” / ” 1.35 / 1.45
DiStefano 256b 1.3 220.484 (MB) 343.42 48.82 - 5.85 / 23.48 0.43 / 0.85 0.12 / 0.32 - / -
’Janus13tp 2.2kb 1.3 305.17 (MB) 113.8 984 583 1.99 / 26.4 0.51 / 0.91 1.04 / 1.51 0.46 / 0.6
’Janus13zk 2.2kb 1.3 406.29 (MB) ” ” 2 (MB) 2.63 / 35.13 ” / ” ” / ” 2.08 / 2.34

with the mpc library. Malicious 2PC circuits computed with
the mpc framework use the dual-execution mode [24]. We rely
on gnark to implement ZKP circuits for Deco, DecoProxy, and
Origo.

B. Performance

All performance benchmarks have been averaged over ten
executions and have been collected on a MacBook Pro con-
figured with the Apple M1 Pro chip and 32 GB of random
access memory (RAM).

1) Client Challenge Benchmarks: Concerning our first op-
timization (cf. Section IV), we evaluate ZKP circuits that are
used during the client challenge. We execute the traditional
circuits CzkAEAD, CzkMtE (cf. Figure 5) as a baseline using the
fastest gnark proof system Groth16. We execute the circuits
ChvzkzkOpen as an AEAD variant with the SHTS assertion (cf.
Figure 8) and ChvzkMtE using the HVZK proof system. We depict
the protocol support of the circuit variants in Table III. Gener-
ally, the HVZK circuits (cf. red in Figure 9) achieve the best
performance, where MtE-based circuits are ahead of AEAD
circuits. This makes sense as the circuit ChvzkzkOpen requires
additional logic of constant size to derive and validate keys
against SHTS. For larger data sizes, this overhead diminishes
as AES (e.g. AEAD circuits) or SHA256 (e.g. MtE circuits)
dominate the circuit complexity. Further, we benchmark the
transparent validation of TLS data via CtpOpen (cf. Figure 8),
which outperforms the privacy-preserving validation for data
sizes beyond 500 bytes.

2) Optimized End-to-end Performance: We present E2E
benchmarks of open-source TLS oracles in Table IV and
provide additional micro benchmarks in the Appendix C.
Concerning TLS 1.2 (cf. top part of Table IV), we run Janus12
using CBC-HMAC to benefit from constant size circuits in the
record phase. For TLSn, which runs TLS 1.2 using AEAD,
record phase 2PC depends on record sizes (cf. row 1 vs row
2/3 in Table IV). Even though the post-record communication
increases, Janus12 achieves the fastest post-record execution
benchmarks. For instance, the HVZK proof computations of
Janus12 outperform related works by a factor of 9 in the local
area network (LAN) setting.

Concerning TLS 1.3, Origo and DecoProxy circumvent 2PC
computation of the record phase by introducing an additional
trust assumption (clients cannot moun MITM attacks). As
a result, these works behave equal to the TLS 1.3 baseline
in the record phase. DiStefano sets the fastest handshake
execution times, which we link to the enhanced Multiplicative
to Additive (MtA) algorithm in the ECTF protocol [29], [41].
Janus13 runs an AEAD cipher suite and evaluate 8 times more
data (256b request, 2kb response) while remaining practical in
all protocol phases.

VII. DISCUSSION

The discussion presents related works and summarizes
remaining limitations and future work directions.

A. Related Works

Xie et al. introduce the garble-then-prove paradigm based
on semi-honest 2PC with authenticated garbling [15]. After the
garble phase, authenticated garbling bits are transformed into
a Pedersen commitment which can be opened in a zkSNARK
proof system. By contrast, our E2E optimization for TLS 1.3
derives SHTS authenticity in a malicious setting. In the gar-
ble phase, we deploy semi-honest 2PC without authenticated
garbling. To compute proofs efficiently, our work relies on a
2PC-based HVZK proof system with a unilateral validation
phase.

Zhang et al. notice that legacy algorithms constitute over
40% of TLS computations and decouple stream cipher com-
putations with a pad commitment [13]. The pad commitment
is used to partly outsource legacy algorithms from the ZKP
circuit to a pre-processing phase. We tackle the arithmetic
requirements of legacy algorithms with a well-suited HVZK
proof system.

Another way to improve the efficiency of the client chal-
lenge is to decouple the maliciously secure 2PC evaluation
of CBs [4]–[6], [29]. Notice that this optimization applies
to TLS oracles which run AEAD cipher suites. Here, the
client obtains output wire keys and shares a commitment
of CB wire keys with the verifier. With the commitment,
the verifier discloses the wire key decoding table as well as
secret shares to the client. The client is now able to verify

the correctness of CCB2+
, access response data, and select a

transparent data opening. Optionally, clients can prove TLS
data in a ZKP circuit which (i) takes in private output wire
keys, (ii) computes CBs with the decoding table as public
input, and (iii) authenticates TLS data by XORing a plaintext
with CBs to the intercepted ciphertext. This approach has the
following limitation. The wire key possession before obtaining
a decoding table prevents the client from accessing response
data such that the client remains with two options. With
knowledge of the plaintext structure, the client commits to
a selection of output encodings, which correspond to the CBs
of interest for the privacy-preserving data opening. Without
knowledge of the plaintext structure, the client uses a merkle
tree commitment structure to commit to all output encodings
and selectively opens CBs in the ZKP circuit via merkle tree
inclusion proofs [5]. Due to frequent updates, API data is
unlikely to remain static over a longer period of time such that
the scenario of not knowing plaintext structures prevails. Our
work, in contrast, allows clients to selectively prove plaintext
data during the client challenge.

B. Disclaimer: Legal and Compliance Issues

This section informs users and companies running the Janus
TLS oracle about subsidiary conditions and agreements. As
TLS oracles are legacy-compatible, companies running the
verifier connect seamlessly to web endpoints which are queried
by users. Web endpoints do not necessarily notice the verifier.
Legal issues (e.g. copyright infringements) arise if users export
proprietary content or declare false data ownership. In this
case, companies are supposed to deny content. If companies
operate oracles in the privacy-preserving mode, then com-
panies learn nothing from transport data beyond the state-
ment validity. In the transparent mode, companies can surveil
opened data in plain. Users must be aware that companies
learn network layer data (e.g. IP addresses, domains), which
is required to operate the proxy service. Tracking or profiling
oracle data may cause regulatory compliance violations.

C. Asymmetric Privacy & Related Concepts

Our definition of asymmetric privacy relates to the concept
of a trapdoor hash function (THF) between two parties [42].
THF guarantee function privacy for the sender and input
privacy for the receiver. The private function evaluates receiver
data at a private index. In contrast, our asymmetric privacy
setting ensures input privacy for a sender and convinces the
receiver of a public function which holds on the entire sender
input.

Further, to differentiate against other notions such as asym-
metric differential privacy [43], our notion of asymmetric
privacy targets a threshold number of parties with access to
commitment secrets.

D. Applications

Generally, the Janus optimizations make ZKP-computing
clients practical in constrained environments (e.g. browsers,
mobile). And, with that, serve existing oracle applications

such as confidential financial instruments, legacy credentials,
or the combating of price discrimination [6]. On top, our
scalability benefits open new application fields where larger
data sets or documents require proofs of provenance. In this
context, our contributions help in fighting the dissemination
of disinformation by attesting generative AI content, which is
among the goals of the Coalition for Content Provenance and
Authenticity (C2PA) [1], [44].

VIII. CONCLUSION

We reconsider the selection of secure computation tech-
niques in TLS oracles by putting an emphasis on the asym-
metric privacy setting and the conditions found in TLS 1.3.
Concerning the asymmetric privacy setting, we show that a
HVZK proof system can be deployed if the client performs
a unilateral validation of the verifier. Concerning TLS 1.3 in
the 1-RTT mode, we show that the authenticity of SHTS can
lower algorithmic security requirements in the garble-then-
prove paradigm. Our contributions improve the efficiency of
ZKP computations and improve E2E benchmarks.

IX. ACKNOWLEDGEMENTS

The authors acknowledge the financial support by the Fed-
eral Ministry of Education and Research of Germany in the
programme of “Souverän. Digital. Vernetzt.”. Joint project 6G-
life, project identification number: 16KISK002. This work has
received funding from The Bavarian State Ministry for the
Economy, Media, Energy and Technology, within the R&D
program ”Information and Communication Technology”, man-
aged by VDI/VDE Innovation + Technik GmbH.

REFERENCES

[1] L. Rosenthol, “C2pa: the world’s first industry standard for content
provenance,” in Applications of Digital Image Processing XLV, vol.
12226. SPIE, 2022, p. 122260P.

[2] S. Longpre, R. Mahari, A. Chen, N. Obeng-Marnu, D. Sileo, W. Bran-
non, N. Muennighoff, N. Khazam, J. Kabbara, K. Perisetla et al., “The
data provenance initiative: A large scale audit of dataset licensing &
attribution in ai,” arXiv preprint arXiv:2310.16787, 2023.

[3] H. Ritzdorf, K. Wüst, A. Gervais, G. Felley, and S. Capkun, “Tls-
n: Non-repudiation over tls enabling-ubiquitous content signing for
disintermediation,” Cryptology ePrint Archive, 2017.

[4] “Tlsnotary–a mechanism for independently audited https sessions.”
https://github.com/tlsnotary/how it works/blob/master/how it works.
md, 2014.

[5] “Pagesigner: One-click website auditing.” https://old.tlsnotary.org/how
it works, 2023.

[6] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “Deco: Lib-
erating web data using decentralized oracles for tls,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1919–1938.

[7] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016
aCM sIGSAC conference on computer and communications security,
2016, pp. 270–282.

[8] J. Ernstberger, J. Lauinger, F. Elsheimy, L. Zhou, S. Steinhorst,
R. Canetti, A. Miller, A. Gervais, and D. Song, “Sok: Data sovereignty,”
Cryptology ePrint Archive, 2023.

[9] D. Malkhi. (2023) Exploring proof of solvency and liability verification
systems. [Online]. Available: https://blog.chain.link/proof-of-solvency/

[10] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell,
T. Lobban, C. Moy, A. Juels, and A. Miller, “Candid: Can-do decen-
tralized identity with legacy compatibility, sybil-resistance, and account-
ability,” in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 1348–1366.

https://github.com/tlsnotary/how_it_works/ blob/master/how_it_works.md
https://github.com/tlsnotary/how_it_works/ blob/master/how_it_works.md
https://old.tlsnotary.org/how_it_works
https://old.tlsnotary.org/how_it_works
https://blog.chain.link/proof-of-solvency/

[11] K. Balan, S. Agarwal, S. Jenni, A. Parsons, A. Gilbert, and J. Collo-
mosse, “Ekila: Synthetic media provenance and attribution for generative
art,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023, pp. 913–922.

[12] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, “Mimc:
Efficient encryption and cryptographic hashing with minimal multi-
plicative complexity,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2016,
pp. 191–219.

[13] C. Zhang, Z. DeStefano, A. Arun, J. Bonneau, P. Grubbs, and
M. Walfish, “Zombie: Middleboxes that don’t snoop,” Cryptology ePrint
Archive, 2023.

[14] M. Jawurek, F. Kerschbaum, and C. Orlandi, “Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 955–966.

[15] X. Xie, K. Yang, X. Wang, and Y. Yu, “Lightweight authentication of
web data via garble-then-prove,” Cryptology ePrint Archive, 2023.

[16] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the tls 1.3 handshake protocol,” Journal of Cryptology,
vol. 34, no. 4, pp. 1–69, 2021.

[17] P. Grubbs, A. Arun, Y. Zhang, J. Bonneau, and M. Walfish, “Zero-
knowledge middleboxes,” Cryptology ePrint Archive, 2021.

[18] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the tls 1.3 handshake protocol candidates,” in Proceedings
of the 22nd ACM SIGSAC conference on computer and communications
security, 2015, pp. 1197–1210.

[19] C. Adams, S. Farrell, T. Kause, and T. Mononen, “Internet x. 509 public
key infrastructure certificate management protocol (cmp),” Tech. Rep.,
2005.

[20] Y. Lindell, “Secure multiparty computation for privacy preserving data
mining,” in Encyclopedia of Data Warehousing and Mining. IGI global,
2005, pp. 1005–1009.

[21] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th annual
symposium on foundations of computer science (Sfcs 1986). IEEE,
1986, pp. 162–167.

[22] Y. Huang, “Practical secure two-party computation,” dated: Aug, 2012.
[23] T. Chou and C. Orlandi, “The simplest protocol for oblivious trans-

fer,” in Progress in Cryptology–LATINCRYPT 2015: 4th International
Conference on Cryptology and Information Security in Latin America,
Guadalajara, Mexico, August 23-26, 2015, Proceedings 4. Springer,
2015, pp. 40–58.

[24] Y. Huang, J. Katz, and D. Evans, “Quid-pro-quo-tocols: Strengthening
semi-honest protocols with dual execution,” in 2012 IEEE Symposium
on Security and Privacy. IEEE, 2012, pp. 272–284.

[25] A. Nitulescu, “zk-snarks: a gentle introduction,” 2020.
[26] J. Thaler et al., “Proofs, arguments, and zero-knowledge,” Foundations

and Trends® in Privacy and Security, vol. 4, no. 2–4, pp. 117–660,
2022.

[27] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok: General
purpose compilers for secure multi-party computation,” in 2019 IEEE
symposium on security and privacy (SP). IEEE, 2019, pp. 1220–1237.

[28] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[29] S. Celi, A. Davidson, H. Haddadi, G. Pestana, and J. Rowell, “Distefano:
Decentralized infrastructure for sharing trusted encrypted facts and
nothing more,” Cryptology ePrint Archive, 2023.

[30] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ecdsa with fast
trustless setup,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 1179–1194.

[31] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” in Proceedings of
the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 21–37.

[32] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider,
and S. Zeitouni, “Automated synthesis of optimized circuits for secure
computation,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, 2015, pp. 1504–1517.

[33] C. Hazay, P. Scholl, and E. Soria-Vazquez, “Low cost constant round
mpc combining bmr and oblivious transfer,” Journal of cryptology,
vol. 33, no. 4, pp. 1732–1786, 2020.

[34] P. Grubbs, J. Lu, and T. Ristenpart, “Message franking via committing
authenticated encryption,” in Annual International Cryptology Confer-
ence. Springer, 2017, pp. 66–97.

[35] P. Grubbs, A. Arun, Y. Zhang, J. Bonneau, and M. Walfish, “{Zero-
Knowledge} middleboxes,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 4255–4272.

[36] S. Gueron, “Key committing aeads,” Cryptology ePrint Archive, 2020.
[37] Z. Luo, Y. Jia, Y. Shen, and A. Kate, “Proxying is enough: Security

of proxying in tls oracles and aead context unforgeability,” Cryptology
ePrint Archive, 2024.

[38] S. Menda, J. Len, P. Grubbs, and T. Ristenpart, “Context discovery
and commitment attacks: How to break ccm, eax, siv, and more,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2023, pp. 379–407.

[39] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage, “Fast message
franking: From invisible salamanders to encryptment,” in Advances
in Cryptology–CRYPTO 2018: 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings,
Part I 38. Springer, 2018, pp. 155–186.

[40] G. Botrel, T. Piellard, Y. E. Housni, I. Kubjas, and A. Tabaie,
“Consensys/gnark: v0.8.0,” Feb. 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.5819104

[41] H. Xue, M. H. Au, M. Liu, K. Y. Chan, H. Cui, X. Xie, T. H. Yuen, and
C. Zhang, “Efficient multiplicative-to-additive function from joye-libert
cryptosystem and its application to threshold ecdsa,” in Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications
Security, 2023, pp. 2974–2988.

[42] N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky,
“Trapdoor hash functions and their applications,” in Annual International
Cryptology Conference. Springer, 2019, pp. 3–32.

[43] S. Takagi, F. Kato, Y. Cao, and M. Yoshikawa, “Asymmetric differential
privacy,” in 2022 IEEE International Conference on Big Data (Big
Data). IEEE, 2022, pp. 1576–1581.

[44] D. Kang, T. Hashimoto, I. Stoica, and Y. Sun, “Zk-img: Attested images
via zero-knowledge proofs to fight disinformation,” arXiv preprint
arXiv:2211.04775, 2022.

[45] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology—EUROCRYPT’99: Inter-
national Conference on the Theory and Application of Cryptographic
Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18.
Springer, 1999, pp. 223–238.

[46] C. Reitwiessner, “zksnarks in a nutshell,” Ethereum blog, vol. 6, pp.
1–15, 2016.

[47] A. R. Block, A. Garreta, J. Katz, J. Thaler, P. R. Tiwari, and M. Zajac,
“Fiat-shamir security of fri and related snarks,” Cryptology ePrint
Archive, 2023.

[48] J. Len, P. Grubbs, and T. Ristenpart, “Partitioning oracle attacks,” in 30th
USENIX security symposium (USENIX Security 21), 2021, pp. 195–212.

[49] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the tls
and dtls record protocols,” in 2013 IEEE symposium on security and
privacy. IEEE, 2013, pp. 526–540.

[50] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Lucky 13 strikes
back,” in Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, 2015, pp. 85–96.

[51] Y. Sheffer, R. Holz, and P. Saint-Andre, “Recommendations for secure
use of transport layer security (tls) and datagram transport layer security
(dtls),” Tech. Rep., 2015.

APPENDIX

A. Cryptographic Building Blocks

We describe algorithmic constructions by introducing se-
curity properties and provide concise tuples of algorithms to
explain input to output parameter mappings. For cryptographic
protocols, we describe the inputs and outputs which are
provided and obtained by involved parties. Additionally, we
mention the security properties of exchanged parameters.

1) Three-party Handshake: In the 3PHS (cf. Figure 10),
each party picks a secret randomness (s, v, p) and computes
its encrypted representation (S, V , P). By sharing V +P = X
with the server in the CH, the server derives the session secret
Zs = s · X , which corresponds to the TLS 1.3 secret DHE.
When the server shares S in the SH, both the proxy and client

https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104

Client / ProverProxy / VerifierServer

Fig. 10. Illustration of the 3PHS and exchanged cryptographic parameters
between the server, the proxy, and the client. The gray box at the bottom
indicates the relationship between shared client-side secrets Zv and Zp, which
corresponds to the session secret Zs of the server.

derive their shared session secrets Zv and Zp respectively such
that Zs = Zv + Zp holds. In the end, neither the client nor
the verifier have full access to the DHE secret of the TLS
handshake phase. The 3PHS works for both TLS versions but
in Figure 10, we show a TLS 1.3-specific configuration based
on the ECDHE, where the parameters (e.g. Zp) are EC points
structured as P = (x, y).

2) Digital Signatures: A digital signature scheme is defined
by the following tuple of algorithms, where

• ds.Setup(1λ) −→ (sk, pk) takes in a security parameter λ
and outputs a public key cryptography key pair (sk, pk).

• ds.Sign(sk, m) −→ (σ) takes in a secret key sk and
message m and outputs a signature σ.

• ds.Verify(pk, m, σ) −→ {0, 1} takes in the public key pk,
a message m, and a signature σ. The algorithm outputs
a 1 or 0 if or if not the signature verification succeeds.

By generating a signature σ on a fixed size message m with
secret key sk, any party with access to the public key pk is able
to verify message authenticity. Digital signatures guarantee
that only the party in control of the secret key is capable of
generating a valid signature on a message.

3) Keyed-hash or Hash-based Key Derivation Function: A
HKDF function converts parameters with insufficient random-
ness into suitable keying material for encryption or authenti-
cation algorithms. The HKDF scheme is defined by a tuple of
algorithms, where

• hkdf.ext(ssalt, kikm) −→ (kpr) takes in a string ssalt, input
key material kikm, and returns a pseudorandom key kpr.

• hkdf.exp(kpr, sinfo, l) −→ (kokm) takes in a pseudorandom
key kpr, a string sinfo and a length parameter l and returns
output key material kokm of length l.

Both functions hkdf.ext and hkdf.exp internally use the hmac
algorithm (cf. Formula 1), which takes in a key k, a bit string
m, and generates a string which is indistinguishable from
uniform random strings. The hmac algorithm requires a hash
function H with input size b (e.g. b=64 if H=SHA256).

hmac(k,m) =H((k′ ⊕ opad)||H((k′ ⊕ ipad)||m))

with k′ = H(k), if len(k) > b

and k′ = k, else
(1)

4) Authenticated Encryption: AEAD provides communica-
tion channels with confidentiality and integrity. This means,
exchanged communication records can only be read by parties
with the encryption key and modifications of encrypted data
can be detected. An AEAD encryption scheme is defined by
the following tuple of algorithms, where

• aead.Setup(1λ) −→ (ppaead) takes in the security param-
eter λ and outputs public parameters ppaead of a stream
cipher scheme E and authentication scheme A.

• aead.Seal(ppaead, pt, k, aD) −→ (ct, t) takes in ppaead, a
plaintext pt, a key k, and additional data aD. The output
is a ciphertext-tag pair (ct, t), where ct = E(pt) and
t = A(pt, k, aD, ct) authenticates ct.

• aead.Open(ppaead, ct, t, k, aD) −→ {pt, ∅} takes in
ppaead, a ciphertext ct, a tag t, a key k, and additional
data aD. The algorithm returns the plaintext pt upon
successful decryption and validation of the ciphertext-tag
pair, otherwise it returns an empty set ∅.

5) Secure Two-party Computation: Secure 2PC allows two
mutually distrusting parties with private inputs x1, x2 to
jointly compute a public function f(x1, x2) without learning
the private input of the counterparty. With that, secure 2PC
counts as a special case of multi-party computation (MPC),
with m = 2 parties and the adversary corrupting t = 1
parties [20]. The adversarial behavior model in 2PC protocols
divides adversaries into semi-honest and malicious adversaries.
Semi-honest adversaries honestly follow the protocol specifi-
cation, whereas malicious adversaries arbitrarily deviate. In the
following, we introduce secure 2PC protocols which are used
in this work, and briefly introduce cryptographic constructions
which are used to instantiate the secure 2PC protocols.

a) MtA Conversion based on Homomorphic Encryption:
The secure 2PC MtA protocol converts multiplicative shares
x, y into additive shares α, β such that α+β = x ·y = r yield
the same result r. The MtA protocol exists in a vector form,
which maps two vectors x, y, with a product r = x · y, to two
scalar values α, β, where the sum r = α + β is equal to the
product r. The functionality of the vector MtA scheme can be
instantiated based on Paillier additive Homomorphic Encryp-
tion (HE) [45]. Additive HE allows parties to locally compute
additions and scalar multiplications on encrypted values. With
the functionality provided by the Paillier cryptosystem, we
define the vector MtA protocol, as specified in the work [30],
with the following tuple of algorithms, where

• mta.Setup(1λ) −→ (skP ,pkP) takes in the security param-
eter λ and outputs a Paillier key pair (skP ,pkP).

• mta.Enc(x,skP) −→ (c1) takes in a vector of field ele-
ments x=[x1, . . . , xl] and a private key skP and outputs
a vector of ciphertexts c1=[EskP

(x1), . . . , EskP
(xl)].

• mta.Eval(c1,y,pkP) −→ (c2,β) takes in the vector of
ciphertexts c1=[c11, . . . , c1l], a vector of field elements
y=[y1, . . . , yl], and a public key pkP . The output is a
tuple of a ciphertext c2 = c1y1

1 · . . . · c1yl

l ·EpkP
(β′) and

the share β = −β′, where β′ $← Zp.

• mta.Dec(c2,skP)−→ (α) takes as input a ciphertext c2 and
a private key skP and outputs the share α=DskP

(c2).
The tuple of algorithms is supposed to be executed in the
order where party p1 first calls mta.Setup and mta.Enc. The
function Ek(z) is a Paillier encryption of message z under
key k. After p1 shares the public key pkP and the vector
of ciphertexts c1 with party p2, then p2 calls mta.Eval and
shares the ciphertext c2 with p1. Last, p1 calls mta.Dec, where
Dk(z) is a Paillier decryption of message z under key k. If the
algorithms are executed in the described order, then party p1
inputs private multiplicative shares in the vector x and obtains
the additive share α. Party p2 inputs the private vector of
multiplicative shares y and obtains the additive share β. In
the end, the relation x · y = α+β holds, and neither the party
p1 nor the party p2 learn anything about the private inputs of
the counterparty.

b) ECTF Conversion: The ECTF algorithm is a secure
2PC protocol and converts multiplicative shares of two EC x-
coordinates into additive shares [4], [6]. Figure 11 shows the
computation sequence of the ECTF protocol which makes use
the vector MtA algorithm defined in Section A5a. By running
the ECTF protocol, two parties p1 and p2, with EC points P1,
P2 as respective private inputs, mutually obtain additive shares
s1 and s2, which sum to the x-coordinate of the EC points sum
P1+P2. TLS oracles use the ECTF protocol to transform the
client-side EC secret shares Zv and Zp into additive shares sv
and sp [4], [6]. Since the relation sv + sp = x for (x, y) =
Zs holds, it becomes possible to follow the TLS specification
by using secure 2PC based on boolean garbled circuits with
bitwise additive shares as input.

c) Oblivious Transfer: Secure 2PC based on boolean
GCs depends on the 1-out-of-2 OT1

2 sub protocol to secretly
exchange input parameters of the circuit [23]. The OT1

2 in-
volves two parties where party p1 sends two messages m1,m2

to party p2 and does not learn which of the two messages mb

is revealed to party p2. Party p2 inputs a secret bit b which
decides the selection of the message mb. An OT scheme is
defined by a tuple of algorithms, where

• ot.Setup(1λ) −→ (ppOT) takes as input a security pa-
rameter λ and outputs public parameters ppOT of a
hash function H and encryption schemes, where E1/D1

encrypts/decrypts based on modular exponentiation and
E2/D2 encrypts/decrypts with a block cipher.

• ot.TransferX(ppOT) −→ (X) takes in ppOT, samples x
$←

Zp, and outputs an encrypted secret X = E1(x).
• ot.TransferY(ppOT, X , b) −→ (Y , kD) takes in ppOT, a

cipher X , a bit b, and samples y
$← Zp. The output is a

decryption key kD = Xy and a cipher Y encrypting as
Y = E1(y) if b ?

= 0, or as Y = X · E1(y) if b ?
= 1.

• ot.Encrypt(ppOT, X , Y , m1, m2, x) −→ (Z) takes in ppOT,
Y , and derives k1 = H(Y x), k2 = H((YX)x). The output
is a vector of ciphers Z = [E2(m1, k1), E2(m2, k2)].

• ot.Decrypt(ppOT, Z, kD, b) −→ (mb) takes in ppOT, key
kD, the bit b, and a vector of ciphers Z = [Z1, Z2]. The
output is the message mb = D2(Zb, kD).

ECTF between two parties p1 and p2.

inputs: P1 = (x1, y1) by p1, P2 = (x2, y2) by p2.
outputs: s1 to p1, s2 to p2.

p1: (sk,pk)=mta.Setup(1λ); send pk to p2
p1: ρ1

$← Zp; c1=mta.Enc([−x1,ρ1], sk);
send c1 to p2

p2: ρ2
$← Zp;(c2,β)=mta.Eval(c1,[ρ2,x2],pk);

δ2=x2 · ρ2+β; send (c2,δ2) to p1
p1: α=mta.Dec(c2,sk);δ1=−x1 · ρ1+α;δ=δ1+δ2;

η1=ρ1 · δ−1; c1=mta.Enc([−y1,η1],sk);
send (c1,δ1) to p2

p2: δ=δ1+δ2; η2=ρ2 · δ−1;
(c2, β)=mta.Eval(c1,[η2,y2],pk); λ2=y2 · η2+β;
send c2 to p1

p1: α=mta.Dec(c2,sk); λ1=−y1 · η1 + α;
c1=mta.Enc([λ1],sk); send c1 to p2

p2: (c2,β)=mta.Eval(c1, [λ2], pk); s2 = 2 · β + λ2
2 − x2;

send c2 to p1
p1: α=mta.Dec(c2,sk); s1 = 2 · α+ λ2

1 − x1

Fig. 11. The ECTF algorithm converts multiplicative shares in form of EC
point x-coordinates from points P1, P2 ∈ EC(Fp) to additive shares s1, s2 ∈
Fp. It holds that s1 + s2 = x, where x is the coordinate of the EC point
P1 + P2.

In the OT1
2 protocol, party p1 calls ot.Setup and ot.TransferX,

and sends the public parameters and cipher X to p2. Party
p2 calls ot.TransferY, locally keeps the decryption key and
shares the cipher Y with p1. Now, p1 shares the output of
ot.Encrypt with p2, who obtains mb by calling ot.Decrypt.

d) Semi-honest 2PC with Garbled Circuits: We define
secure 2PC based on boolean garbled circuits by extending
our OT definition of Section A5c with the tuple of algorithms,
where

• gc.Setup(1λ) −→ (ppGC) takes in the security parameter λ
and outputs public parameters ppGC.

• gc.Garble(ppGC, CG, din) −→ (kg
in, e, G(C), Tk-d, Td-k)

takes as input ppGC, a boolean circuit CG, the input bit
string din, and randomly samples signal bits and wire keys
σ,k $← Zn. Every wire receives two wire keys where the
internal labels map wire keys to the numbers 0 and 1.
Based on the signal bits and internal labels, every wire
receives two external labels. The output consists of input
wire keys kin, the garbled tables G(C), input and output
decoding tables Td-k, Tk-d, and external labels e.

• gc.Evaluate(ppGC, kg
in, ke

in, e, G(C)) −→ (kout) takes in
public parameters, input wire keys, external labels, and
the garbled circuit tables and outputs output wire keys.

On a high-level, a 2PC system based on boolean garbled
circuits involve a party p1 as the garbler and party p2 as
the evaluator. Party p1 calls gc.Setup and gc.Garble. Sub-
sequently, p1 sends e, kg

in, G(C), and Tk-d to p2. If the
semi-honest 2PC system is used in the context of an HVZK
proof system, then p1 does not share Tk-d. Next, to obtain

the remaining input labels ke
in of the evaluator p2, p1 and

p2 interact with the OT1
2 scheme defined in Section A5c.

Initially both parties call the transfer functions. Next, p1
sends input wire keys encrypted by ot.Encrypt as messages
(m1=k̂ein, m2=k̂¬e

in) to p2. Party p2 obtains labels kein by calling
ot.Decrypt. Then, p2 calls gc.Evaluate and if Tk-d has been
shared, decodes output wire keys to obtain the output data bit
string dout.

e) Maliciously Secure TwoPC based on dual-execution:
We consider running the semi-honest 2PC protocol based on
boolean garbled circuits [21] to instantiate the maliciously
secure 2PC scheme of the work [24]. Again, the 2PC dual-
execution protocol runs two instances of the semi-honest 2PC,
where both parties p1 and p2 successively act as the garbler
and evaluator. Before any 2PC output is shared with the
counterparty, the protocol runs a secure validation phase on
obtained outputs. The idea of the mutual output verification
is as follows. If p1, as the evaluator, obtains output wire keys
kx and output bits b from a correctly garbled circuit of p2,
then p1 knows which output labels ky according to b p2 must
evaluate on a correctly garbled circuit of p1. Thus, if p1 shares
a commitment in form of a hash H(ky||kx) with p2 after the
first circuit evaluation, and p2 returns the same hash H(ky||kx)
after the second circuit evaluation, then p1 is convinced of a
correct garbling by p2. Because, if p2 incorrectly garbles a
circuit, then p1 obtains the bits b’. And, if p1 correctly garbles
a circuit, p2 obtains correct bits b. The incorrect bits b’ lead
p1 to a selection of labels k’x and k’y and the correct bits
b lead p2 to a correct selection of ky ̸= k’y . Since p2 does
not know which output keys p1 evaluates, p2 cannot predict
any keys k’x,k’y which lead to the hash that is expected by
p1. To communicate the output of a maliciously secure 2PC
to a single party, only the first garbler is required to share the
output decoding table with the counterparty.

6) Zero-knowledge Proof Systems: In practice, zero-
knowledge proof systems are implemented by a tuple of
algorithms, where

• zk.Setup(1λ, C) −→ (CRSC) takes in a security parameter
and algorithm, and yields a common reference string,

• zk.Prove(CRSC , x, w) −→ (π) consumes the CRS, public
input x, and the private witness w and outputs a proof π.

• zk.Verify(CRSC , x, π) −→ {0, 1} yields true (1) or false
(0) upon verifying the proof π against public input x.

The tuple of algorithms achieves the properties of a zero-
knowledge proof systems. If zero-knowledge proof frame-
works depend on cryptographic constructions that require a
trusted setup (e.g. use pairings or KZG commitments), the
zk.Setup function must be called by a trusted third party. For
transparent instantiations of zero-knowledge proof frameworks
(e.g. based on FRI commitments), the zk.Setup function can
be called by either party. The function zk.Prove and zk.Verify
are called by the prover and verifier respectively.

a) Zero-Knowledge Succinct Non-Interactive Argument
of Knowledge: A zkSNARK proof system is a zero-knowledge
proof system, where the four properties of succinctness, non-
interactivity, computational sound arguments, and witness

knowledge hold [46]. Succinctness guarantees that the proof
system provides short proof sizes and fast verification times
even for lengthy computations. If non-interactivity holds (e.g.,
via the Fiat-Shamir security [47]), then the prover is able to
convince the verifier by sending a single message. Computa-
tional sound arguments guarantee soundness in the zkSNARK
system if provers are computationally bounded. Last, the
knowledge property ensures that provers must know a witness
in order to construct a proof.

7) Secret Sharing: We formally define a secret sharing
scheme with the following tuple of algorithms, where

• ss.Setup(λ) −→ (pp) takes in a security parameter and
returns public parameters and randomness r

$← R(λ).
• ss.Share(pp, r) −→ (r) takes in public parameters and

randomness and returns additive secret shares r=[r1,. . .,
rn], where

∑n
x=1 rx = r holds.

• ss.Reconstruct(r) −→ (r) takes in additive secret shares
and returns their sum.

8) Cryptographic Commitment Schemes: We formally de-
fine cryptographic commitments with the following tuple of
algorithms, where

• c.Commit(m, rc) −→ (c) takes in a string m and commit
randomness rc

$← R and yields a commitment string c.
• c.Open(m, rc, c) −→ ({0, 1}) takes in a message string,

a commit randomness, and a commitment string and
outputs 1 only if c is a valid commitment string of the
tuple (m, rc).

The algorithms c.Commit, c.Open satisfy the proper-
ties of a secure commitment scheme, where computa-
tional binding ensures that after committing to m1, a
probabilistic polynomial time (PPT) adversary cannot find
c.Commit(m2, r2)==c.Commit(m1, r1), with (m1,m2) ∈
M, (r1, r2) ∈ R, and m2 ̸= m1. Further, anyone seeing c
learns nothing on m due to the property of statistical hiding,
where c.Commit(m1, rc) is statistically indistinguishable from
c.Commit(m2, rc) with (m1,m2) ∈M and rc ∈ R.

B. Security Analysis

The security analysis concerns the deployment of the HVZK
proof system and the unilateral validation in the asymmetric
privacy setting. Further, we show that the Janus protocol is
secure against malicious adversaries during the mutual authen-
tication of the SHTS parameter. The security analysis relies
on our threat and system model (cf. Section III) and uses our
formalized cryptographic building blocks (cf. Sections II-C,
Appendix A)

1) Construction 1: The first construction creates a mali-
ciously secure evaluation of the HVZK proof system in the
asymmetric privacy setting. The proof system leverages semi-
honest 2PC based on boolean garbled circuit [14] and is com-
bined with a unilateral validation phase. To show the security
of the construction, we first define the security guarantees of
the asymmetric privacy setting and conclude that the unilateral
validation protocol patches remaining vulnerabilities.

Theorem 1. If three parties p0, p1, and p2 with access to

• a three-party TLS handshake protocol Π3PHS

• a secure commitment scheme Πcom

• a secret sharing scheme Πss with p0 as the trusted dealer
• a secure channel sc0-1 between p0 and p1
• a secure channel sc1-2 between p1 and p2
• a secure channel sc0-2 between p0 and p2
• a maliciously secure 2PC scheme Π2PC between p1 and
p2

perform the sequence of computations

1) p0 calls [r1, r2]= Πss.Share(r), with r
$← R(λ)

2) p0 shares r1 using sc0−1 and r2 using sc0−2

3) either p0 calls c=Πcom.Commit(m, r) with bit strings
m, c and shares m, c using sc0−1 and c using sc0−2, or
Π2PC evaluates Πcom.Commit(m, r1+r2) where p1 has
m

4) p2 shares r2 using sc1−2

under the assumptions that
• the TLS 3PHS implements Πss and the sequence of

computations (1) and (2)
• p0 discards calling Πcom.Open
• p0 cannot be compromised by the adversary
• p1 never discloses the secret share r1
• the security of the schemes Π2PC , Π3PHS , etc. holds

(e.g. 3PHS relies on the discrete logarithm hardness to
find a from aG, with random a

$← EC(Fp) and base
point G ∈ EC(Fp))

we say that asymmetric privacy holds between p1 and p2 such
that only p1 can call Πcom.Open.

Proof 1.1: The security of the 3PHS keeps secret shares
confidential. Without access to the initially shared secret
shares, the adversary A cannot compute the commitment
string c. Further, the security of the commitment scheme
prevents the adversary from finding a collision of c. When
computing the commitment through a maliciously secure 2PC
system, then A cannot learn any information on the inputs
of the counterparty. Since all parties use secure channels to
communicate parameters, A learns nothing of communicated
parameters. Thus, A cannot find any m or reconstruct r which
prevents A from calling Πcom.Open.

Theorem 2. If two parties p1 and p2 with access to
• a HVZK proof system ΠHVZK using a semi-honest 2PC

system Πsh2PC

• two secure commitment scheme Π1
com,Π2

com

• an asymmetric privacy setting Πasym using Π2
com

• a 2PC circuit Copen implementing Π2
com.Open

• a secure channel sc1-2 between p1 and p2
• a unilateral validation Πuv using Π2

com

perform the sequence of computations
1) ΠHVZK.Setup: p2 calls p=Πsh2PC.Garble(Copen)
2) ΠHVZK.Setup: p2 shares {p \ Tk−d} using sc1-2

3) ΠHVZK.Prove: p1 calls k=Πsh2PC.Evaluate
4) Πuv: p1 calls c=Π1

com.Commit(k,r) with r
$← R(λ)

5) Πuv: p1 shares c using sc1-2

6) Πuv: p2 shares {p} using sc1-2
7) Πuv: p1 recomputes Copen to verify {p}
8) Πuv: p1 shares r using sc1-2
9) ΠHVZK.Verify: p2 calls Π1

com.Open(c,r)
under the assumptions that

• in Πsh2PC p1 acts as the evaluator and p2 acts as the
garbler

• Πasym gives p1 access to Π2
com.Commit

we say that after running Πasym, composition of ΠHVZK and
Πuv as Πcomp establishes security against malicious adver-
saries.

Proof 1.2: The security of Πsh2PC allows the adversary A
to maliciously garble the circuit Copen. However, if A receives
c upon disclosure of {p \ Tk−d}, the hiding property of
Πcom prevents A from learning any secret information on
the 2PC inputs of p1. Further, p1 detects a cheating A at the
sequence number (7) and aborts the protocol before disclosing
r to A. Further, Πsh2PC prevents A from predicting a k that
corresponds to a 1. If A uses Π1

com to commit garbage, then
p2 aborts at the sequence number (9).

Notice. We define Πcomp(Πsh2PC=arg1, Copen=arg2,
Π2

com=arg3) as an construction that takes as input a semi-
honest 2PC system which is executed in the context of the
HVZK proof system. The HVZK proof system evaluates
a 2PC circuit as the second argument. The third argument
is a commitment scheme which establishes the asymmetric
privacy setting.

2) Construction 2: The second construction provides the
verifier with a secure authenticity verification of the TLS 1.3
SHTS secret in a setting with malicious adversaries. To do
so, the construction combines the effects of a specific TLS
1.3 operation mode with the TLS 3PHS and a secure 2PC
computation of the session secret SHTS. This combination
introduces an unsolvable challenge to the adversary which
prevents the adversary from forging the authenticity of SHTS.

Theorem 3. If three parties p0, p1, and p2 with access to
• a secure channel sc0-1 between p0 and p1
• a secure channel sc0-2 between p0 and p2
• a three-party TLS handshake protocol Π3PHS

• a secure commitment scheme Πcom

• a maliciously secure 2PC scheme Π2PC between p1 and
p2

• a secret sharing scheme Πss with p0 as the trusted dealer
• a secure AEAD scheme ΠAEAD
• a secure signature scheme Πσ where p0 maintains the

private key sk

perform the sequence of computations

1) p0 calls [r1, r2]= Πss.Share(r), with r
$← R(λ)

2) p0 shares r1 using sc0−1 and r2 using sc0−2

3) p2 samples t
$← R(λ) and discloses t

4) p0 calls c=Πcom.Commit(t, r), with bit strings c
5) p0 calls σ=Πσ .Sign(sk, t)
6) p0 calls s=ΠAEAD.Seal(c,σ) and discloses s
7) Π2PC evaluates Πcom.Commit(t, r1+r2)

8) p2 calls σ=ΠAEAD.Open(c,s) and checks Πσ .Verify(pk,t,
σ)

under the assumptions that

• the TLS 3PHS implements Πss and the sequence of
computations (1) and (2)

• p0 cannot be compromised by the adversary
• pk, and t are public
• p0 never discloses sk
• p2 only performs step (7) if a s has been captured

we say that an PPT adversary has negligible probability with
respect to λ in forging c such that p2 accepts step (8) and that
c is authentic.

Proof 2.1: Again, Π3PHS and Π2PC keep the secret shares
confidential. Thus, the adversary A can only access c at step
(7). With c, the adversary can forge a new transcript s but
cannot change a s which has already been captured by p2.
Thus, the challenge for A is to predict a valid c’ at a point in
time where c remains hidden. Predicting a correct c requires A
either to find a collision for c which the secure commitment
prevents. Or, A correctly guesses the secret share r2 which
evaluates to a correct c before a s is captured by p2. In the
case of a correct guess, A can replay a σ’ on previous t’ and
encrypt σ’ under the right c such that p2 accepts. However,
guessing r2 or r1 has negligible probability in λ.

3) Construction 3: The third construction reduces the secu-
rity requirements of cryptographic constructions in the garble-
then-prove paradigm [15]. Specifically, we show that the exis-
tence of a computation trace to an authenticated commitment
string to allows to replace a semi-honest 2PC system based
on authenticated garbling with a semi-honest 2PC system that
does not require authenticated garbling. Our garble-then-prove
paradigm leverages the efficient proof system construction in
the asymmetric privacy setting in the prove phase. Further it
requires commitment authenticity through SHTS. Thus, for
this construction, we use our definitions of Πcomp and Πauth
(cf. proof 1.1, 1.2, and 2.1 of Appendix B).

Theorem 4. If two parties p1 and p2 with access to

• a garble-then-prove scheme Πg-t-p using two semi-honest
2PC system Π1

sh2PC , Π2
sh2PC

• a composition scheme Πcomp

• a secure commitment scheme Πcom

• an authenticated commitment scheme Πauth using Πcom

• a 2PC circuit Copen implementing Πcom.Open
• a 2PC circuit Ckdc+record implementing the TLS 1.3 spec-

ification
• a 2PC circuit Cϕ implementing a data compliance check

against a statement ϕ
perform the sequence of computations

1) Πg-t-p.Garble: p1 calls Π1
sh2PC.Garble(Ckdc+record)

2) Πg-t-p.Garble: p2 calls Π1
sh2PC.Evaluate(Ckdc+record)

3) Πg-t-p.Prove: Πcomp(Π2
sh2PC , (Ckdc+record + Copen + Cϕ) ,

Πcom)
under the assumptions that

• in Π1
sh2PC p2 acts as the evaluator and p1 acts as the

garbler
• in Π2

sh2PC p1 acts as the evaluator and p2 acts as the
garbler

• Πauth initially authenticates Πcom

we say that malicious security holds for the garble-then-prove
paradigm with a semi-honest 2PC system in the garble phase.

Proof 3.1: The adversary A is able to maliciously garble
Π1

sh2PC and obtain secrets from p2. However, due to the
asymmetric privacy setting established during the prove phase,
A learns nothing beyond what A would have learned during
the prove phase. And, a malicious garbling of A is recorded
at p2 because p2 obtains all outputs of 2PC circuits executed
in the garble phase. Thus, once the construction proceeds to
step (3), and A has cheated, p2 is able to detect it in step
(9) of the Πcomp construction and can abort the protocol. This
conditional abort option prevents A from obtaining a false
provenance attestation of TLS data.

C. Benchmarks Extended

The following subsection provides additional benchmarks.
1) Cipher Suite Analysis: To evaluate cipher suite support

among today’s APIs, we scanned the first 15k entries of the
top-1m.csv.zip list11. To perform the scan, we rely on
a publicly available TLS cipher suite scanner12. We remove
scans which encounter network errors (e.g. no such host)
or TLS errors (e.g. EOF, handshake failures). The cipher
suite support distribution is depicted in Figure 12. TLS 1.2
configured with GCM reaches a support of 73.5% while TLS
1.2 CBC-HMAC reaches 70.05%. TLS 1.3 support is lower at
55.8%. Even though TLS oracles relying on CBC-HMAC have
efficient record phase computations, multiple attacks on the
CBC MAC-then-encrypt pattern have been introduced [48]–
[50]. Even though countermeasures exist, protecting records
with the CBC MAC-then-encrypt pattern is not recommended
anymore [51]. Our distribution of scans aligns with this rec-
ommendation. Further, most endpoints support AEAD cipher
suites, where the TLS 1.2 support is 17.7% ahead of TLS 1.3.

2) Microbenchmarks of 2PC Circuits: We present micro
benchmarks of secure computation building blocks in Tables V
and VI. Table VI compares circuit complexities, execution
times, and communication overhead of 2PC circuits, where
execution times and communication overhead is further di-
vided into offline and online benchmarks. The 2PC circuits
CXHTS and Ck,iv derive session secrets in milliseconds and
compute CBs via the circuit CX

CB2+
for a 2 kB record in

164.9 milliseconds. An interesting fact to notice is that the
AEAD tag circuit Ctag is efficient for small request sizes
and scales sufficiently but not ideally for larger request sizes.
The overhead in the circuit Ctag is introduced by the alge-
braic structure of the Galois field polynomials in GF(2128),
which, as an algebraic structure, is in conflict with the binary
representation of computation in boolean GCs. The related

11https://github.com/PeterDaveHello/top-1m-domains
12https://github.com/TeoLj/TLSscanner

https://github.com/PeterDaveHello/top-1m-domains

Fig. 12. TLS cipher suite scan performed at the 11th of June 2024. Green
bars refer to TLS 1.3 cipher suites and yellow bars indicate TLS 1.2 cipher
suites.

TABLE V
MALICIOUSLY-SECURE 2PC BENCHMARKS AVERAGED OVER 10

EXECUTIONS USING THE FRAMEWORK emp-ag2pc.

2PC Functions Communication Execution

Online Offline Online Offline

SHA256 13.184 KB 12.16 MB 10.095 ms 59.4 ms
AES128 6.8 KB 4.33 MB 2.8 ms 55.5 ms

works [5], [29] propose a scalable OT-based computation of
the AEAD tag, which we consider as future work to improve
our implementation.

Concerning data opening times, we can see that the trans-
parent mode with the circuit CtpOpen is more efficient compared
to the privacy-preserving mode with the circuit CzkOpen. This
behavior is expected because, the 2PC circuit of the transparent
mode does not include the ciphertext, SHTS, and CBtag

verification inside the circuit (cf. Figure 8). As a consequence,
the data communicated in the OT scheme of the transparent
mode is about half the size of the privacy-preserving mode.
The effect is further visible in the online communication cost,
where the transparent mode communicates 3x less data than
the privacy-preserving opening mode. As another reference
benchmark (cf. fϕ of the last row in Table VI), we evaluate the
verification of a confidential document hash H(f) in the cir-
cuit CzkOpen. To do so, we set the function fϕ=H(f)

?
= H(pt)

to a hash check on the 2 kB response data, with H=SHA256.
Concerning online execution times, the extra hash evaluation
yields a negligible overhead for the client but increases the
communication overhead by a factor of 1.3x.

TABLE VI
SECURE COMPUTATION BENCHMARKS SEPARATED INTO OFFLINE/ONLINE EXECUTION AND COMMUNICATION VALUES. WE SEPARATE THE HANDSHAKE,

RECORD, AND POST-RECORD PHASES WITH DASHED LINES.

2PC Circuit Constraints (x106) Execution Offline Execution Online Communication Offline Communication Online

ECTF - - 212.96 ms - 1.861 kB
CXHTS 3.14 215.56 ms 144 ms 34 MB 110 kB

Ckm1 ,iv 10.34 723.96 ms 484.82 ms 108.08 MB 356 kB
C256 B

ECB2+
/ C2 kB

ECB2+
1.16 / 9.18 67.78 / 578.76 ms 67.6 / 164.9 ms 10.12 / 86.02 MB 116 / 566 kB

C256 B
tag / C2 kB

tag 4.04 / 29.01 285.98 ms / 2.42 s 492.24 ms / 3.78 s 52.06 / 378.02 MB 512 kB / 2 MB

C256 B q, 2 kB r
tpOpen 12.69 0.89 s 0.46 s 126.01 MB 583 kB

C256 B q, 2 kB r
zkOpen / fϕ 12.73 / 17.15 0.89 / 1.13 s 2.04 / 2.08 s 127.02 / 168.03 MB 2.13 / 2 MB

	Introduction
	Preliminaries
	General Notations
	Transport Layer Security
	Handshake Phase
	Record Phase

	Cryptographic Building Blocks
	Semi-honest 2PC with gcs
	Oblivious Transfer
	2PC with Malicious Adversaries
	Zero-knowledge Proofs based on Garbled Circuits
	Cryptographic Commitments
	Secret Sharing

	System Model
	System Roles & Adversarial Behavior
	Threat Model
	System Goals

	Optimizing Proof Computations In The Asymmetric Privacy Setting
	Analyzing Oracles & Asymmetric Privacy
	Three-party Handshake
	Client-side Two-party Computation
	Client Challenge in Asymmetric Privacy Setting

	HVZK and Asymmetric Privacy
	Formalizing Asymmetric Privacy
	HVZK and Selective-failure Attacks
	Unilateral Secure Validation
	TLS Compatibility

	Optimizing End-to-end Performance
	Authenticating shts
	Pre-fetch for Immediate Server-side Handshake Transcript
	Compute and Disclose of SHTS
	Attacking SHTS Authenticity
	SHTS Validation

	Garble-then-prove with Semi-honest twopc
	Intuition of Garble-then-Prove
	Garble Phase
	Prove Phase

	Additional Considerations
	Operation Modes
	Processing Multiple Records
	Data Attestation

	Performance Evaluation
	Implementation
	Performance
	Client Challenge Benchmarks
	Optimized End-to-end Performance

	Discussion
	Related Works
	Disclaimer: Legal and Compliance Issues
	Asymmetric Privacy & Related Concepts
	Applications

	Conclusion
	Acknowledgements
	References
	Appendix
	Cryptographic Building Blocks
	Three-party Handshake
	Digital Signatures
	Keyed-hash or Hash-based Key Derivation Function
	Authenticated Encryption
	Secure Two-party Computation
	Zero-knowledge Proof Systems
	Secret Sharing
	Cryptographic Commitment Schemes

	Security Analysis
	Construction 1
	Construction 2
	Construction 3

	Benchmarks Extended
	Cipher Suite Analysis
	Microbenchmarks of twopc Circuits

