
A-PoA: Anonymous Proof of Authorization for Decentralized
Identity Management

Associate Professorship of Embedded Systems and Internet of Things
TUM Department of Electrical and Computer Engineering
Technical University of Munich

Jan Lauinger, Jens Ernstberger, Emanuel Regnath,
Mohammad Hamad, Sebastian Steinhorst

Technical University of Munich
TUM Department of Electrical and Computer Engineering
Associate Professorship of Embedded Systems and Internet of Things
October 13, 2024

Motivation
Context: Self-sovereign Identity Management (SSIM)

Central Federated Self-sovereign

2

Problem: Missing Authorization
Distributed Ledger-based Identity Management (IdM) based on Verifiable Credentials

Verifiable Registry (e.g. Distributed Ledger)
to maintain identifiers and schemas

Credential
Schema

(CS)

Credential
Definition

(CD)

Root Authority
(RA) Holder

Verifier

CIA

Verifiable
Credential

Issue
Credential

Verify
CS & CD

Credential Issuing
Authority (CIA)

Missing RA to CIA
Trust Relation

 (Solved in our work)

Ledger write
privilege

Ledger read
privilege Fetch data

Signed data

Trust Verification

Authorized

3

Dynamic Cryptographic Accumulator
RSA-Accumulator (Camenisch and Lysyanskaya [1])

• Initialize accumulator: at = (gacc)2 mod n

• Add element to the accumulator: at+1 = axi
t mod n

• Calculate element witness pair (xi ,wi): wi = aXt\{xi}
t mod n

• Verify accumulator membership of xi : wxi
t mod n == at+1

• Revoke accumulator element xi : at+1 = a
x−1

i mod φ(n)
t mod n, with φ(n) = (p−1) · (q−1)

• Requirement to update all witness values after addition or revocation.

4

Cryptographic Accumulator in the Context of Hyperledger Indy
Privacy Issue

Verifiable Registry (e.g. Distributed Ledger)
to maintain identifiers and schemas

Credential
Schema

(CS)

Credential
Definition

(CD)

Root Authority
(RA)

Credential Issuing
Authority (CIA)

 RA to CIA
 Trust Relation

1. Create CS
2. Create a_t and X

4. Create x_i
5. Send x_i

6. Add x_i to a_t and X
8. Create w_i for x_i

9. Send w_i

3. Register a_t and CS

a_t

7. Update a_t

Transaction Handlers (verify transactions)

11. Register CD using w_i^(x_i)

10. Generate CD ref CS

5

Zero Knowledge Proof

• Completeness
− Prover P, knowing a solution to a problem, can successfully convince a verifier V.

• Soundness
− Prover P, not knowing a solution to a problem, will fail to convince a verifier V.

• Zero Knowledge
− A zero knowledge Proof of Knowledge (PoK) scheme requires the verifier V to learn nothing but the validity of a

convincing assertion from prover P.

6

Intuitive Zero Knowledge Proof: Alibaba’s Cave Analogy
• Peggy P the prover challenges Victor V the verifier.

• After several rounds, V is convinced that P knows a secret.

Victor

Peggy
Rnd

Victor

Peggy

Victor
Peggy

A

B B

A A

B

B!

7

Schnorr Proof of Knowledge of Discrete Log
Prover Verifier
α ∈ Zq (U,A = Uα) ∈G
r ← Zq

R=gr∈G−−−−−→
c∈C←−− c← C = {1, . . . ,2λ} ⊆ Zq

z = c ·α + r ∈ Z z−→ accept iff Uz = Ac ·R
Figure: The Schnorr Proof of Knowledge protocol [2], as shown in [3].

1. Completeness Commitment scheme
(opening, challenge, response)

Uz = gz = gc·α+r = gr · (gα)c =

R · (Uα)c = R ·Ac

2. Soundness Extractor concept with
the ability to extract secret knowledge
from P convinces V of the existence of a
satisfying solution.

2. Soundness Assumption: V is able to
receive two accepting conversations
(R,c,z) and (R,c′,z ′).
With Uz = Ac ·R and Uz ′ = Ac′ ·R
=⇒ Uz−z ′ = Ac−c′

=⇒ α = z−z ′
c−c′ = logg(U)

3. HVZK Simulator concept with
simulated transcript Tsim and real
transcript Treal of interactive protocol [4].

3. Honest Verifier Zero Knowledge
Select z,c← Zq

Calculate α = gz

Uc

Output Tsim = (α,c,z)

4. Zero Knowledge (Fiat-Shamir
Heuristic)

c = H(R) =⇒ c = H(T)

8

Towards Non-interactive Zero Knowledge Proof of Exponent

Problem with Schnorr: G is a finite cyclic group of prime order q. ⇒We need a ZK proof of discrete log in a group of unknown
order for RSA accumulator.

⇒ Boneh, Bünz, and Fisch [3] construct the NI-ZKPoKE protocol, which is sound and secure under the adaptive root problem.

Extraction based on Chinese Remainder Theorem [5] with recovery of (α mod l) for many l and simulation for HVZK leverages
the Pedersen commitment [6].

9

Boneh et al. NI-ZKPoKE [3]

GenProof (wx ,x ,at) :

k ,ρx ,ρk
R←− [−B,B] ; z = gxhρx

Ag = gkhρk ; Awx = wk
x

l ← Hprime(wx ,at ,z,Ag,Awx) ; c← H(l)
qx ← b(k + c ·x)/lc ; qρ ← b(ρk + c ·ρx)/lc
rx ← (k + c ·x) mod l ; rρ ← (ρk + c ·ρx) mod l
π ←{l,z,gqx hqρ ,wqx

x , rx , rρ}
r e t u r n : π

VerifyProof (wx ,at ,π) :
{l,z,Qg,Qwx , rx , rρ}← π ; c = H(l)
Ag ← Ql

ggrx hrρ z−c ; Aw ← Ql
wx

w rx
x a−c

t
Verify rx , rρ ∈ [l] ; l = Hprime(wx ,at ,z,Ag,Aw)
r e t u r n : {0,1}

10

High-Level Overview of A-PoA
Cryptographic Accumulator and Zero Knowledge Proof of Knowledge of Exponent

Verifiable Registry (e.g. Distributed Ledger)
to maintain identifiers and schemas

Credential
Schema

(CS)

Credential
Definition

(CD)

Root Authority
(RA)

Credential Issuing
Authority (CIA)

 RA to CIA
 Trust Relation

1. Create CS
2. Create a_t and X

4. Create x_i
5. Send x_i

6. Add x_i to a_t and X
8. Create w_i for x_i

9. Send w_i

3. Register a_t and CS

a_t

7. Update a_t

Transaction Handlers (verify transactions)

10. Generate Proof π

13. Register CD using π

11. Generate CD ref CS
12. Generate pseudonym DID

11

Security
Adversary Model

• A1 (Network Eavesdropper): Suppose a hostile network participant, acting as A1, intends to eavesdrop and modify or
decrypt all messages m exchanged throughout the introduced protocols.
⇒ Authenticated Encryption for DID communication relying on security of e.g. asymmetric cryptography.

• A2 (Unforgeability): Suppose A2 is a malicious adversary, trying to forge a valid proof of an invalid identity. A2’s efforts can
be based on previously seen witness pairs (x ,w) (only w is known by A2) and accumulator values a.
⇒ Accumulator collision (a′x

′
= gx1,...,xn mod n) protected by strong RSA assumption. + Revocation of x ′ causes adversary

with collision to authenticate.

• A3 (Cheating Verifier): Suppose A3 is a malicious Verifier V that verifies the authentication proofs of a prover P. Then, A3

does not learn anything else than the validity of the statement proven by P.
⇒ Computational indistinguishable transcripts Tsim and Treal + Fiat Shamir heuristic in NI-ZKPOKE [3].

12

Evaluation

10 20 30 40 50

0

20

40

60

80

Number of elements added to a witness

Ti
m

e
(m

s)

RSA 2048
RSA 1024

Figure: Duration (ms) of adding elements xi to an already existing witness wt
for a single holder witness update (numbers averaged by 100 repetitions).

1 10 20 30 40 50 100 1k
0

20

40

60

Number of elements xi of the accumulator

Ti
m

e
(m

s)

VerifyProof
Hprime

1 10 20 30 40 50 100 1k
0

20

40

60GenProof
Hprime

Figure: GenProof (left, lightgray) and VerifyProof (right, gray) execution
times (ms) of the NI-ZKPoKE protocol with 128-Bit polynomial time Hprime
hash function and the RSA-accumulator (2048-Bit).

13

Evaluation

Table: Mean execution times (ms) of A-PoA with a 2048-Bit RSA- accumulator (λ = 128), k=50 elements, and 128-Bit hashes.

Protocol Function Time (ms) COM Big O

Authorization
Prime Gen. 309.81 k O(n)

Acc. Gen. 88.80 1 O(1)

Wit. Gen. 4383.60 k O(n)

Authentication
GenProof 40.06 1 O(1)

VerifyProof 23.42 0

Revocation Acc. Revoke 2244.85 (0-k) O(n)

∑Authorization N/A 4782.21 2k + 1 O(n)

∑Authentication N/A 63.48 1 O(1)

∑Revocation N/A 2244.85 (0-(k -1)) O(n)

14

Related Work

• Asynchronous accumulators with backwards compatibility to build a distributed Public Key Infrastructure (PKI) [7]. Authorized
key pairs certify services and remain verifiable with accumulator membership via the ledger.
⇒ Authorization by membership verification but missing anonymous setup.

• Disposable dynamic accumulator in the context of a pseudonym-based signature scheme to establish privacy-preserving
electronic IDs [8]. One time token to authenticate which preserves anonymity, unlinkability, and backward unlinkability.
⇒ One time tokens require generation while our scheme keeps witnesses for authentication. Our schema requires
pseudonym DIDs with new verifiers.

15

Acknowledgements

• This work has received funding by the European Union’s Horizon 2020 Research and Innovation Programme through the
nIoVe project (https://www.niove.eu/) under grant agreement no. 833742.

• With the support of the Technische Universität München - Institute for Advanced Study, funded by the German Excellence
Initiative and the European Union Seventh Framework Programme under grant agreement no. 291763.

16

https://www.niove.eu/

References I

J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to efficient revocation of anonymous credentials,”
in Annual International Cryptology Conference. Springer, 2002, pp. 61–76.

C.-P. Schnorr, “Efficient identification and signatures for smart cards,” in Conference on the Theory and Application of
Cryptology. Springer, 1989, pp. 239–252.

D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for accumulators with applications to iops and stateless blockchains,”
in Annual International Cryptology Conference. Springer, 2019, pp. 561–586.

M. Fischlin, “Trapdoor commitment schemes and their applications.” Ph.D. dissertation, Citeseer, 2001.

D. Pei, A. Salomaa, and C. Ding, Chinese remainder theorem: applications in computing, coding, cryptography. World
Scientific, 1996.

L. Chen and T. P. Pedersen, “New group signature schemes,” in Workshop on the Theory and Application of of Cryptographic
Techniques. Springer, 1994, pp. 171–181.

L. Reyzin and S. Yakoubov, “Efficient asynchronous accumulators for distributed pki,” in International Conference on Security
and Cryptography for Networks. Springer, 2016, pp. 292–309.

M. Hölzl, M. Roland, O. Mir, and R. Mayrhofer, “Disposable dynamic accumulators: toward practical privacy-preserving
mobile eids with scalable revocation,” International Journal of Information Security, vol. 19, no. 4, pp. 401–417, 2020.

17

References II
J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous credentials from bilinear maps,” in Annual
international cryptology conference. Springer, 2004, pp. 56–72.

J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator based on bilinear maps and efficient revocation for
anonymous credentials,” in International workshop on public key cryptography. Springer, 2009, pp. 481–500.

W. W. W. Consortium et al., “Verifiable credentials data model 1.0: Expressing verifiable information on the web,” https://www.
w3. org/TR/vc-data-model/?# core-data-model, 2019.

D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, M. Sabadello, and J. Holt, “Decentralized identifiers (dids) v1. 0,” Draft
Community Group Report, 2020.

C. Adams, S. Farrell, T. Kause, and T. Mononen, “Internet x. 509 public key infrastructure certificate management protocol
(cmp),” RFC 4210 (Proposed Standard), Tech. Rep., 2005.

M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X. 509 internet public key infrastructure online certificate
status protocol-ocsp,” 1999.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. T. Polk et al., “Internet x. 509 public key infrastructure
certificate and certificate revocation list (crl) profile.” RFC, vol. 5280, pp. 1–151, 2008.

D. Boneh and V. Shoup, “A graduate course in applied cryptography,” Recuperado de https://crypto. stanford. edu/˜
dabo/cryptobook/BonehShoup_0_4. pdf, 2017.

18

Questions?

19

Thank You for listening.

Contact

• Jan Lauinger: jan.lauinger@tum.de

• Jens Ernstberger: jens.ernstberger@tum.de

• Emanuel Regnath: emanuel.regnath@tum.de

• Mohammad Hamad: mohammad.hamad@tum.de

• Sebastian Steinhorst: sebastian.steinhorst@tum.de

20

mailto:jan.lauinger@tum.de
mailto:jens.ernstberger@tum.de
mailto:emanuel.regnath@tum.de
mailto:mohammad.hamad@tum.de
mailto:sebastian.steinhorst@tum.de

Backup Slides

21

Boneh et al. NI-ZKPoKE [3]
Completeness

Accept if: ⇒ Ql
g ·grx ·hrρ = (gqx ·hqρ)l ·grx ·hrρ = gqx ·l+rx ·hqρ ·l+rρ = gsx ·hsρ = gk+c·x ·hρk +c·ρx = gk ·hρk ·gx ·c ·hρx ·c = Ag ·zc

⇒ Ql
u ·urx = (uqx)l ·urx = uqx ·l+rx = usx = uk+c·x = uk ·ux ·c = Au ·wc

Soundness (Extractor)

1. Extractors to extract x ,ρ such that z = gx ·hρ and gs1 ·hs2 = Ag ·zc.

2. Set R←{} and sample s1,s2
R←− [0,2λ].

3. Sample l R←− Primes(λ), c R←− [0,2λ] and send s1,s2, l,c to A1.

4. Obtain output Qg,Qu, r1, r2 from A0. If transcript is accepting (Ql
g ·gr1 ·hr2 = Ag ·zc and Ql

u ·ur1 = Au ·wc) then update
R← R∪{(r1, r2, l,c)}. Otherwise return to step 2.

5. Use CRT to compute s1 = r (i)
1 mod l(i) and s2 = r (i)

2 mod l(i), for each (r (i)
1 , r (i)

2 , l(i)) ∈ R. If us1 = Au ·wc then output s1,
otherwise return to step 2.

6. Repeat for s′1,s
′
2,c
′, so that x = ∆s1/∆c = (s1−s′1)/(c−c′) and ρ = ∆s2/∆c = (s2−s′2)/(c−c′), with extraction based on

us1 = Au ·wc and us′1 = Au ·wc′ , thus (ux)∆c = w∆c ⇒ ux = w .

22

Boneh et al. NI-ZKPoKE [3]
Zero Knowledge (Simulator)

1. c̃ R←− [0,2λ] , l̃ R←− Primes(λ)

2. z̃← hρ̃ , ρ
R←− [B]

3. q̃x , q̃r
R←− [B]2

4. r̃x , r̃ρ ∈ [l]2

5. Q̃g ← gq̃x ·hq̃ρ , Q̃u← uq̃x

6. Ãg ← Q̃l
g ·g r̃x ·hr̃ρ ·z−c̃ , Ãu← Q̃l

u ·u r̃x ·w−c̃

⇒ (z̃, Ãg, Ãu, c̃, l̃,Q̃g,Q̃w , r̃x , r̃ρ) is statistically indistinguishable from (z,Ag,Au,c, l,Qg,Qw , rx , rρ)

23

Motivation
Anonymous Credentials

Group Signature Scheme [9]

1. Key generation procedure (Key generation for revocation
management [10])

2. Join protocol between member and group manager (Holder
obtains signature of group manager on committed values)

3. Sign algorithm for member to sign messages (Proving
Knowledge of a signature)

4. Algorithm to verify group signatures (manager/member) for
validity using the group’s public key

5. Opening algorithm for group manager to identify member
for revocation

Involved roles→ Issuer, Prover/Holder, Verifier

Hyperledger Indy1 implementation of anonymous credentials

• Based on W3C standard of Verifiable Credentials [11] and
Decentralized Identifiers [12]

• Endorser Role (Ledger write privilege) to register
Credential Schema (CS)→ CS defines attributes of a
credential

• Endorser Role (Ledger write privilege) to register
Credential Definition (CD)→ CD defines public
cryptographic data required for credential validation
(attributes/validity, revocation) and references CS

→ Indy anonymous credential protocol2 supports anonymous
credentials from various issuers to multiple holders

1https://www.hyperledger.org/use/hyperledger-indy
2https://github.com/hyperledger-archives/indy-crypto/blob/master/libindy-crypto/docs/AnonCred.pdf

24

https://www.hyperledger.org/use/hyperledger-indy
https://github.com/hyperledger-archives/indy-crypto/blob/master/libindy-crypto/docs/AnonCred.pdf

Code: 2048-Bit RSA Accumulator
class RSA2048_Accumulator():

def __init__(self, elements):
self.p, self.q = 113670..., 1472657... # 1024 primes p and q
self.modulus, self.phi = 1673972..., 16739728... # 2048 bit N as RSA modulus p*q = N, PHI (p-1)(q-1)
self.g_acc, self.value = pow(3,2), 9 # g=3 works, look at the script pick_g-2.py, # squaring g mod N
self.elements = elements # generate x elements, hash to primes

def add(self, element):
if element not in self.elements:

old_value = self.value
self.value = pow(self.value, element, self.modulus)
return old_value

def gen_witness(self, element):
wit = self.g_acc
for x in self.elements:

if x == element: continue
prime_item = self._items.as_prime(item)
wit = pow(wit, x, self.modulus)

return wit
def verify_membership(self, wit_t, x_t):

return pow(wit_t, x_t, self.modulus) == self.value
def remove(self, x):

if x in self.tails:
old_value = self.value
self.tails.remove(x)
base = modinv(x, self.phi)
invers = pow(base, 1, self.phi)
self.value = pow(self.value, invers, self.modulus)
return self.value

25

Code: NI-ZKPoKE
def Com(g, x, h, r, q):

return (pow(g,x,q) * pow(h,r,q)) % q

def gen_proof(security, acc, u, x):
s = number.getRandomRange(2, acc.modulus-1)
g = 2
h = pow(g, s, acc.modulus)
w = pow(u, x, acc.modulus) # u^x = w

B = pow(2, 2*security, acc.modulus)*acc.bit_size+1
k = number.getRandomRange(3, B) # random numbers max 64-bit size if security lambda of 128 possible
ro_x = number.getRandomRange(3, B)
ro_k = number.getRandomRange(3, B)

z = Com(g, x, h, ro_x, acc.modulus)
A_g = Com(g, k, h, ro_k, acc.modulus)
A_u = pow(u, k, acc.modulus)
l = Hash2Prime(u, w, z, A_g, A_u, "md5")
hf = hashlib.md5(str(l).encode("utf-8"))
c = int(hf.hexdigest(), 16)

q_x = (k + c * x) // l # proof values:
r_x = (k + c * x) % l
q_ro = (ro_k + c * ro_x) // l
r_ro = (ro_k + c * ro_x) % l
Q_g = Com(g, q_x, h, q_ro, acc.modulus)
Q_u = pow(u, q_x, acc.modulus)
return [l, z, Q_g, Q_u, r_x, r_ro]

26

Code: NI-ZKPoKE
def verify_proof(pi, u, acc_value):

value extraction of proof params
hf = hashlib.md5(str(l).encode("utf-8"))
c = int(hf.hexdigest(), 16)

base = modinv(z, n)
base2 = modinv(w, n)
A_g_ver = (pow(Q_g, l, n)*pow(g, r_x, n)*pow(h, r_ro, n)*pow(base, c, n)) % n
A_u_ver = (pow(Q_u, l, n)*pow(u, r_x, n)*pow(base2, c, n)) % n
l_ver = Hash2Prime(u, w, z, A_g_ver, A_u_ver, "md5")

compare1 = pow(Q_u, l_ver, n)*pow(u, r_x, n) % n == A_u_ver*pow(w, c, n) % n
compare2 = pow(Q_g, l_ver, n)*Com(g, r_x, h, r_ro, n) % n == A_g_ver*pow(z, c, n) %n
return compare1 and compare2

def Hash2Prime(u, w, z, A_g, A_u, hashtype):
chal = str(u)+str(w)+str(z)+str(A_g)+str(A_u)
h = hashlib.md5() # or hashlib.sha256()
h.update(chal.encode("utf-8"))
nonce, temp = 0, 0
while True:

h.update(str(nonce).encode("utf-8"))
nonce += 1
c = int(h.hexdigest(), 16)
if number.isPrime(c):

return c

27

Motivation
Credential Schema and Credential Definition Test Code Example3

let mut credential_schema_builder = Issuer::new_credential_schema_builder().unwrap();
credential_schema_builder.add_attr("name").unwrap();
credential_schema_builder.add_attr("age").unwrap();
let credential_schema = credential_schema_builder.finalize().unwrap();

let mut non_credential_builder = NonCredentialSchemaBuilder::new().unwrap();
non_credential_builder.add_attr("master_secret").unwrap();
let non_credential_schema = non_credential_builder.finalize().unwrap();

let (cred_pub_key, cred_priv_key, cred_key_correctness_proof) =
Issuer::new_credential_def(&credential_schema, &non_credential_schema, true).unwrap();

let mut credential_values_builder = CredentialValuesBuilder::new().unwrap();
credential_values_builder.add_value_hidden("master_secret", &prover_mocks::master_secret().value().unwrap()).unwrap();
credential_values_builder.add_value_known("name", &string_to_bignumber("indy-crypto")).unwrap();
credential_values_builder.add_dec_known("age", "25").unwrap();

let cred_values = credential_values_builder.finalize().unwrap();

let credential_nonce = new_nonce().unwrap();

let (blinded_credential_secrets, credential_secrets_blinding_factors, blinded_credential_secrets_correctness_proof) =
Prover::blind_credential_secrets(&cred_pub_key, &cred_key_correctness_proof, &cred_values, &credential_nonce).unwrap();

3https://github.com/hyperledger-archives/indy-crypto/blob/master/libindy-crypto/src/cl/issuer.rs
28

https://github.com/hyperledger-archives/indy-crypto/blob/master/libindy-crypto/src/cl/issuer.rs

Motivation
Decentralized Identifiers (DIDs)

Verifiable Registry (e.g. Distributed Ledger -> Ethereum, Sovrin, Cardano, etc.)

1. Create Key
Pair and DID

2. Register DID

DID
Document

3. DID Method

4. did:example:179ab... 6. Verify

5. Proof

29

https://www.w3.org/TR/did-core/

Motivation
X.509 Public Key Infrastructure (PKI)

• Wikipedia: PKI is set of roles, policies, hardware, software
and procedures to create, manage, distribute, use, store
and revoke digital certificates

• Certificate Management Protocol (CMP) [13]

• Online Certificate Status Protocol (OCSP) [14]

• Certification Path Validation [15]

Root CA
(self-certificate)

Certificate Authority
(CA)

Certification

Request Certificate
End Entity

(e.g. Browser)

Registration Authority
(RegA)

Applicant Approval

Verifier

Certification Path
Validdation
(e.g. SSL)
- Integrity
- Validity

- Revocation Status
(CRL, OCSP)

- Issuer
- Constraints

(Name, Policy, etc.)
- Key usage
- Extensions

30

https://en.wikipedia.org/wiki/Public_key_infrastructure

Notations Overview
Symbol Definition

t Discrete time / operation counter
Xt Tails file at time t
X0 Initial tails file at t = 0
xi i-th element of the tails file
wi Witness value associated with i-th element
at Accumulator value at time t

p, q, p′, q′ Large λ -bit prime numbers
Zn n ∈ N, Zn = {1,2, . . . ,n} = ring of integers mod n
Z∗n Set of invertible elements in Zn
G? Generic group of unknown order {(Zn)∗/{±1}}

[-B,B] Range of integers such that |G|/B is negligible
QRn Subgroup of quadratic residues of G?,

contains x ∈ Z∗n, if ∃ y ∈ Z∗n, with y2 ≡ x (mod n)
φ(n) Number of elements in Z∗n,

if p ·q = n then φ(n) = (p−1) · (q−1)
g, h Generator of a Group G?

31

Notations of Groups used in Cryptography
Using values out of different types of groups allow to calculate different equations. Some calculations are believed to be hard to
solve, e.g. (taken from [16]):

1. Let g be a generator of Z∗p. Given x ∈ Z∗p find an r such that x = gr mod p. This is known as the discrete log problem.

2. Let g be a generator of Z∗p. Given x ,y ∈ Z∗p where x = gr1 and y = gr2. Find z = gr1·r2. This is known as the Diffie-Hellman
problem.

With finite cyclic group G, G∗ represents the set of generators of G.

Cyclic Group Z∗p, if g ∈ Z∗p exist with property Z∗p = {1,g,g2,g3, . . . ,gp−2}, then g is called generator. Elements in Z∗p are
invertible (x ,a,∈ Z∗p with x ·a = 1 mod p). Inverse of x is denoted as x−1.

Example: Select g = 3 in Z∗7, =⇒ 〈3〉= {1,3,32,33,34,35,36} ≡ {1,3,2,6,4,5}(mod 7) = Z∗7.

An element x ∈ Z∗p is called a Quadratic Residue (QR) if it has a square root in Zp. Let g be a generator of Z∗p. Let x = gr for
some integer r . Then x is a QR in Zp if and only if r is even. Since x = gr is a QR if and only if r is even, it follows that exactly
half the elements of Zp are QR’s. Testing if an element is a QR in Zn is believed to be hard if factorization of n unknown [16].

32

Notations of Groups used in Cryptography
RSA-Accumulator Value

Requires generator gacc
R←− Z∗n, with n = p ·q, p = 2 ·p′+ 1, and q = 2 ·q′+ 1, where p′ and q′ are Sophie Germain primes (p such

that 2p + 1 is prime).

Finding Sophie Germain primes, calculate safe prime of k =512, 768, 1024, 2048, 4096 bits, repeatedly try to find a random
prime p of k -1 bits, until 2p + 1 is prime (or repeatedly find a random k -bit prime p, until (p-1)/2 is prime). Miller-Rabin primality
test to find primes faster.

[1] requires at ∈QRn,at 6= 1, so at is QR in Zn.
⇒ Construction in [3] requires G? as generic group of unknown order {(Zn)∗/{±1}}.

Create random values in QRn: pick a random number r relatively prime to n, and compute r2 mod n; that’s a random value in
QRn; size(QRn) = (p−1)(q−1)/4≈ N/4

⇒ at = (gacc)2 mod n, with gacc
R←−G?

33

Generation of Accumulator Elements
RSA-Accumulator Elements

[1] requires accumulator elements x ∈ primes, with x 6= p′,q′ and A≤ x ≤ B, where A, B can be chosen with arbitrary polynomial
dependence (Linear Independence of Polynomials, arbitrary constant coefficients, distinct positive integers as grades),
respecting the security parameter λ , as long as 2 < A and B < A2.

Generation of x ← Hprime(x ′,λ) using Hprime to achieve collision resistance of accumulator elements.

Tails file Xt = {x1,x2, ...,xi}, with i = {1,2, . . . ,N} contains accumulator elements.

34

Notations Overview
Symbol Definition

t Discrete time / operation counter
Xt Tails file at time t
X0 Initial tails file at t = 0
xi i-th element of the tails file
wi Witness value associated with i-th element
at Accumulator value at time t

p, q, p′, q′ Large λ -bit prime numbers
Zn n ∈ N, Zn = {1,2, . . . ,n} = ring of integers mod n
Z∗n Set of invertible elements in Zn
G? Generic group of unknown order {(Zn)∗/{±1}}

[-B,B] Range of integers such that |G|/B is negligible
QRn Subgroup of quadratic residues of G?,

contains x ∈ Z∗n, if ∃ y ∈ Z∗n, with y2 ≡ x (mod n)
φ(n) Number of elements in Z∗n,

if p ·q = n then φ(n) = (p−1) · (q−1)
g, h Generator of a Group G?

35

