TUM Blockchain Conference

ZK 101: The Magic of Proving Without Revealing

Jan Lauinger
Munich, September 2024

A Principle to Convince Someone

Verifier

Construction of a Cryptographic Proof

Prover Verifier
o€ Zq (UA=U%eG
R=g"eG
r < Zq ———
ceC

& c«C={1,.,2"}Cz,

z=c-a+recZ 5 acceptlfoz A°.R

1. Completeness Commitment scheme
(opening, challenge, response)

Uz =g?=gcatr=gr. (g%)° =
R-(U%)°=R-A°

2. Soundness Extractor concept with
the ability to extract secret knowledge
from P convinces V of the existence of a
satisfying solution.

2. Soundness Assumption: Vis ableto 3. Honest Verifier Zero Knowledge

receive two accepting conversations Select z,¢ < Zgq

(R,c,z) and (R,c,Z'). Calculate o = fj—zc

With U? = A°. R and U7 =A°-R Output Teim = (t, ¢, 2)

= U = A

= a=Z C, =log,(V) 4. Zero Knowledge (Fiat-Shamir
Heuristic)

3. HVZK Simulator concept with

simulated transcript T, and real c=H(R)=c=H(T)

transcript Tre4 Of interactive protocol [4].

From Dedicated Proofs to General-purpose Proof Systems

P claims to know a w such
that C(x,w) =y
Building blocks |:> P claims to know a vector ¢
(Q (x) such that p(x) = V(x)q(x)
e Arithmetic representations & circuit satisfiability 0 ® &

o RA1CS, Plonkish, AIR, Custom CSS "

w

e Quadratic arithmetic program - QAP (System of equations over polynomials)

e Functional commitment scheme (cryptographic object)

Computation

Algebraic Circuit
e Compatible interactive oracle proof - IOP (information theoretic object) 4 R1CS

o Cryptographic setup procedure?

o Polynomial, Multilinear, Vector, etc.. IOP *1 QAP

Linear PCP

Linear Interactive Proof
W zkSNARK

Zero knowledge proofs MOOC https://www.voutube.com/playlist?list=PLS01nW3Rtgor_yJmQsGBZAg5XMA4TSGpPs

https://www.youtube.com/playlist?list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs

Functional IOP - generalized Linear Probabilistic
Checkable Proofs - PCPs

A Linear PCP is a PCP in which the proof is a vector of elements of a finite field , and such that
the PCP oracle is only allowed to do linear operations on the proof. Namely, the response from
the oracle to a verifier query is a linear function.

Prover P(pD,X, W) Verifier V(vp, X)
oracle fl €EF s
r, & Fp
T
oracle f, EF R
Tt-1 Te_q € F,
oracle ft EF

el
verify (X, T1yyeey Te—1)

Modern SNARK Constructions
https://www.voutube.com/watch?v=bGEXYpt3sj0&list=PLS01nW3Rtgor yJmQsGBZAg5XM4TSGpPs&index=2

https://www.youtube.com/watch?v=bGEXYpt3sj0&list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs&index=2

Functional Commitment and IOPs

Popular commitment schemes

e Polynomial, Multilinear, Vector (Merkle tree) commitment

e Inner product commitments (inner product arguments - IPAs)
Verifier access (powers of the verifer) in |IOPs

e Oracle access: verifier may query provers messages

e Randomness: verifier is probabilistic
e Interaction: prover and verifier exchange messages

e Multi-prover: multiple provers that are isolated

How to Make SNARKSs https://www.youtube.com/watch?v=KiklQL Jk4eQ

https://www.youtube.com/watch?v=KjkIQLJk4eQ

Constructing Functional Commitments

Popular constructions

e Bilinear Groups

o KZG commitment
e Hash functions

o e.g. for Fast Reed-Solomon IOP of Proximity - FRI
e Elliptic curves

o for Bulletproofs

e Groups of unknown order

Types of Cryptographic Proof Systems

Construction and key properties

e zkSNARK
o Succinctness: short proofs and fast to verify
e zkSTARK
o Scalable, transparent
e MPC-based ZKP
o Efficient evaluation of non-algebraic statements
e Recursive ZKPs
o Proof of proof
e zkEVMs

o Efficient ZK computation for any type of computation

ZKP Application Domains

e Privacy .
Compression

(SNARKs)

Confidentiality

o Credentials, group membership

Compression
o Rollups, compact credentials Credibility
e Content Provenance
o zKTLS, image compression, data feeds, zkBridges
e Blockchain Applications

o Tornado cash, Zcash

Group membership using ZKPs

e Membership without nullifiers
o zkMessage
o heyAnon
e Membership with nullifiers
o Tornado cash
o Semaphore
e Other membership proofs
o zkEmaill

o zkJWT

Proving the Preimage of a Hash Function

Private witness w
. T ”
input r=d[”age I zk circuit C :

s Proof 7
cs.Open(w,z,c) = 1—»

Public commit c ?
. > _
input { stmt ¢ 4 fo(z) =1

Frameworks to Construct zkSNARKSs

/ written in domain-specific language (DSL)

Public Parameters Circuit Public inputs Private inputs
pp Compiled Constraint Generate witness W, W)=
System (CCS) W P
pk vk .
Setup ccs w Prove n w,, Verify ok?
/\ CCSs n

Running a ZKP Protocol with a Smart Contract Verifier

e ganache -m "much repair shock ... bullet interest solution"
o Starting local blockchain network (single instance)
e go run main.go -init true

o Compiles a gnark circuit (cubic function)
o Runs a ZKP setup procedure to generate prover and verifier keys
o Exports a solidity proof verification contract
e go run main.go -bindings true
o Compile contract into ABI and BIN files with solc
o Use abigen to generate Go code bindings in a Go verifier package

e go run main.go -deploy true
o Use Go verifier package to deploy the contract and interact with it
e go run main.go -address 0x2e144...c888f1fF1a -verify true

o Call the contract to verify the computed proof

Link to Repo https://github.com/jplaui/gnark_lib/tree/main/deploy_solidity

https://github.com/jplaui/gnark_lib/tree/main/deploy_solidity

Useful Resources

Proof of knowledge: hitps://asecuritysite.com/golang/go_proof

Schnorr Proof: https://asecuritysite.com/zero/schnorr

General-purpose Proof from Scratch: https://github.com/arnaucube/go-snark-study

ZK Circuit Library (gnark): https://github.com/jplaui/gnark_lib
ZK MOOC: https://www.youtube.com/playlist?list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs

https://asecuritysite.com/golang/go_proof
https://asecuritysite.com/zero/schnorr
https://github.com/arnaucube/go-snark-study
https://github.com/jplaui/gnark_lib
https://www.youtube.com/playlist?list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs

Questions?

About myself

Name: Jan Lauinger

Company: unaffiliated, please hire me

Website: https://ianzn.com

Github: https://github.com/jplaui

Uni/TUM Profile: https://www.ce.cit.tum.de/esi/mitarbeiter/lauinger/
Resume: https://ianzn.com/assets/files/resume latest.pdf

https://ianzn.com
https://github.com/jplaui
https://www.ce.cit.tum.de/esi/mitarbeiter/lauinger/
https://ianzn.com/assets/files/resume_latest.pdf

