
Jan Lauinger
Munich, September 2024

TUM Blockchain Conference

ZK 101: The Magic of Proving Without Revealing

A Principle to Convince Someone

Construction of a Cryptographic Proof

From Dedicated Proofs to General-purpose Proof Systems

Building blocks

● Arithmetic representations & circuit satisfiability

○ R1CS, Plonkish, AIR, Custom CSS

● Quadratic arithmetic program - QAP (System of equations over polynomials)

● Functional commitment scheme (cryptographic object)

○ Cryptographic setup procedure?

● Compatible interactive oracle proof - IOP (information theoretic object)

○ Polynomial, Multilinear, Vector, etc.. IOP

Zero knowledge proofs MOOC https://www.youtube.com/playlist?list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs

https://www.youtube.com/playlist?list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs

Functional IOP - generalized Linear Probabilistic
Checkable Proofs - PCPs
A Linear PCP is a PCP in which the proof is a vector of elements of a finite field , and such that
the PCP oracle is only allowed to do linear operations on the proof. Namely, the response from
the oracle to a verifier query is a linear function.

Modern SNARK Constructions

https://www.youtube.com/watch?v=bGEXYpt3sj0&list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs&index=2

https://www.youtube.com/watch?v=bGEXYpt3sj0&list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs&index=2

Functional Commitment and IOPs

Popular commitment schemes

● Polynomial, Multilinear, Vector (Merkle tree) commitment

● Inner product commitments (inner product arguments - IPAs)

Verifier access (powers of the verifer) in IOPs

● Oracle access: verifier may query provers messages

● Randomness: verifier is probabilistic

● Interaction: prover and verifier exchange messages

● Multi-prover: multiple provers that are isolated

How to Make SNARKs https://www.youtube.com/watch?v=KjkIQLJk4eQ

https://www.youtube.com/watch?v=KjkIQLJk4eQ

Constructing Functional Commitments

Popular constructions

● Bilinear Groups

○ KZG commitment

● Hash functions

○ e.g. for Fast Reed-Solomon IOP of Proximity - FRI

● Elliptic curves

○ for Bulletproofs

● Groups of unknown order

Types of Cryptographic Proof Systems

● zkSNARK

○ Succinctness: short proofs and fast to verify

● zkSTARK

○ Scalable, transparent

● MPC-based ZKP

○ Efficient evaluation of non-algebraic statements

● Recursive ZKPs

○ Proof of proof

● zkEVMs

○ Efficient ZK computation for any type of computation

Construction and key properties

ZKP Application Domains

● Privacy

○ Credentials, group membership

● Compression

○ Rollups, compact credentials

● Content Provenance

○ zkTLS, image compression, data feeds, zkBridges

● Blockchain Applications

○ Tornado cash, Zcash

Confidentiality Compression
 (SNARKs)

Credibility

Group membership using ZKPs

● Membership without nullifiers

○ zkMessage

○ heyAnon

● Membership with nullifiers

○ Tornado cash

○ Semaphore

● Other membership proofs

○ zkEmail

○ zkJWT

Proving the Preimage of a Hash Function

Frameworks to Construct zkSNARKs

Public Parameters Public inputs Private inputs

Compiled Constraint
System (CCS)

Circuit

written in domain-specific language (DSL)

Setup Prove Verify

pp Generate witness (wpub , wpriv) =
w

ccs

pk vk

pk
w
ccs

vk
wpub
𝞹

𝞹 ok?

Running a ZKP Protocol with a Smart Contract Verifier

Link to Repo https://github.com/jplaui/gnark_lib/tree/main/deploy_solidity

● ganache -m "much repair shock … bullet interest solution"

○ Starting local blockchain network (single instance)

● go run main.go -init true

○ Compiles a gnark circuit (cubic function)
○ Runs a ZKP setup procedure to generate prover and verifier keys
○ Exports a solidity proof verification contract

● go run main.go -bindings true
○ Compile contract into ABI and BIN files with solc
○ Use abigen to generate Go code bindings in a Go verifier package

● go run main.go -deploy true

○ Use Go verifier package to deploy the contract and interact with it

● go run main.go -address 0x2e144…c888f1fF1a -verify true

○ Call the contract to verify the computed proof

https://github.com/jplaui/gnark_lib/tree/main/deploy_solidity

Useful Resources

Proof of knowledge: https://asecuritysite.com/golang/go_proof

Schnorr Proof: https://asecuritysite.com/zero/schnorr

General-purpose Proof from Scratch: https://github.com/arnaucube/go-snark-study

ZK Circuit Library (gnark): https://github.com/jplaui/gnark_lib

ZK MOOC: https://www.youtube.com/playlist?list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs

https://asecuritysite.com/golang/go_proof
https://asecuritysite.com/zero/schnorr
https://github.com/arnaucube/go-snark-study
https://github.com/jplaui/gnark_lib
https://www.youtube.com/playlist?list=PLS01nW3Rtgor_yJmQsGBZAg5XM4TSGpPs

Questions?

About myself

Name: Jan Lauinger
Company: unaffiliated, please hire me
Website: https://ianzn.com
Github: https://github.com/jplaui
Uni/TUM Profile: https://www.ce.cit.tum.de/esi/mitarbeiter/lauinger/
Resume: https://ianzn.com/assets/files/resume_latest.pdf

https://ianzn.com
https://github.com/jplaui
https://www.ce.cit.tum.de/esi/mitarbeiter/lauinger/
https://ianzn.com/assets/files/resume_latest.pdf

