

IEEE International Conference on Blockchain and Cryptocurrency 27–31 May 2024 // Dublin, Ireland

Portal: Time-Bound and Replay-Resistant Zero-Knowledge Proofs for Single Sign-On

Jan Lauinger, Serhat Bezmez, Jens Ernstberger, Sebastian Steinhorst

Technical University of Munich

TUM Department of Electrical and Computer Engineering

Associate Professorship of Embedded Systems and Internet of Things

Munich, May 2024

Motivation

Problem: Replay attack of transaction payloads

- Public claims
 - Users remain accountable if any misbehaviour is detected
- Private claims
 - **Open issue**, which we solve

Contributions

- New transaction sequence which secures on-chain ZKP verifications against replay attacks
- Portal, an alternative SSO solution with enhanced privacy and control
- Open-source¹ the Portal proof of concept and evaluate operation cost

Zero-knowledge Systems

Zero-knowledge Systems

Blockchain Transactions

Transition function computes $(st_{i+1}, output_i) = f(st_i, input_i)$

SSO Smart Contract Architecture

Storage Network

Replay Attack

https://api.etherscan.io/api
?module=logs
&action=getLogs
&action=getLogs
&fromBlock=15073139
&toBlock=15074139
&address=0x59728544b08ab483533076417fbbb2fd0b17ce3a
&topic0=0x27C4f0403323142b599832f26acd21c74a9e5b809f2215726e244a4ac588cd7d
&topic0_1_opr=and
&topic0_1_opr=and
&topic1=0x000000000000000000000023581767a106ae21c074b2276d25e5c3e136a68b
&page=1
&offset=1000
&apikey=YourApiKeyToken

"status":"1", "message":"0K", "result":[{ {

"address":"0x59728544b08ab483533076417fbbb2fd0b17ce3a",

"topics":[

 $\label{eq:started_st$

"blockNumber":"0xe60262", "timeStamp":"0x62c26caf",

```
"gasPrice":"0x5e2d742c9",
```

"gasUsed":"0xfb7f8",

"logIndex":"0x4b",

"transactionHash":"0x26fe1a0a403fd44ef11ee72f3b4ceff590b6ea533684cb279cb4242 "transactionIndex":"0x39"

```
},
```

From:

https://docs.etherscan.io/api-endpoints/logs

Time-bound Replay-resistant ZKPs

New transaction sequence

- Tx_1 samples randomness at contract and maps it to Tx_1 sender address
- Proof computation bound by Tx₁ transaction time
- Tx_2 sends proof π with additional circuit logic (asserts nonce & address)

SSO Smart Contract Architecture

Storage Network

Cost Analysis/Benchmarks

Tx / Call	Туре	Cost (eth/\$)	Time (ms)	Size (kB)
C^{reg}	deploy	4.1e-3/8.6	18	bc:6.5,tx:6.6
C^{id}	deploy	6.5e-3/13.5	10	bc:10,tx:10
$C^{{\mathcal C}_1}$	deploy	4.9e-3/10.2	385	bc:7.4,tx:12
set_ C_1	C^{reg}	8.4e-5/0.18	11	tx: 0.46
register	C^{reg}	7.4e-5/0.16	51	tx: 0.3
$claim^{pub}$	C^{id}	6.4e-05/0.13	3	tx: 0.48
sample	$C^{{\mathcal C}_1}$	6.6e-05/0.14	6	tx: 0.1
verify_ π	$C^{{\mathcal C}_1}$	8.4e-4/ 1.76	252	tx: 1.20
$claim^{priv}$	C^{id}	3.9e-4/0.82	21	tx: 0.68
$\operatorname{setup}_{\operatorname{plonk}}^{{\mathcal{C}}_1}$	off-chain	-	1029	p_{Π} : 7430
$prove_{plonk}^{\mathcal{C}_1}$	off-chain	-	195	$\pi: 0.552$
set/get $_{\rm IPFS}^{p_{\Pi}}$	off-chain	-	631 / 66	7430
$get^{W/n/C_1}$	off-chain	-	10/6.2/4.8	42/78/130

Discussion

- Future Work:
 - Deploying Portal at L2 network, Standardization Compliance (W3C VCs and DIDs, OIDC)
 - Comparing efficiency & cost to related works benchmarks
 - Decentralizing the Portal ID service (multi-signature, register ID service public keys at registry contract)

Conclusion

- Conclusion
 - Portal as non-free but cheap SSO alternative
 - Enhanced privacy and control of digital assets

Thank You for Listening

Questions?

SSO Smart Contract Architecture

Portal Identity and Benchmarks

Tx / Call	Туре	Cost (eth/\$)	Time (ms)	Size (kB)
C^{reg}	deploy	4.1e-3/8.6	18	bc:6.5,tx:6.6
C^{id}	deploy	6.5e-3/13.5	10	bc:10,tx:10
$C^{\mathcal{C}_1}$	deploy	4.9e-3/10.2	385	bc:7.4,tx:12
set_ C_1	C^{reg}	8.4e-5/0.18	11	tx: 0.46
register	C^{reg}	7.4e-5/0.16	51	tx: 0.3
claim ^{pub}	C^{id}	6.4e-05/0.13	3	tx: 0.48
sample	$C^{\mathcal{C}_1}$	6.6e-05/0.14	6	tx: 0.1
verify_ π	$C^{\mathcal{C}_1}$	8.4e-4/ 1.76	252	tx: 1.20
claim ^{priv}	C^{id}	3.9e-4/0.82	21	tx: 0.68
setup $_{\text{plonk}}^{C_1}$	off-chain	-	1029	p_{Π} : 7430
$prove_{plonk}^{C_1}$	off-chain	-	195	$\pi: 0.552$
set/get ^{p_{Π}} _{IPFS}	off-chain	-	631 / 66	7430
get ^{$W/n/C_1$}	off-chain	-	10/6.2/4.8	42/78/130

Verifying ZKP Verification On-chain

Image from: Navigating Privacy on Public Blockchains